Computer Graphics Lecture Notes

CSC418/ CSCD18/ CSC2504
Computer Science Department
University of Toronto

Version: November 24, 2006

Copyright(©) 2005 David Fleet and Aaron Hertzmann

CSC418/CSCD18/CSC2504

CONTENTS

Contents
Conventions and Notation v
1 Introduction to Graphics 1
1.1 RasterDisplays e 1
1.2 BasicLineDrawing o e 2
2 Curves 4
2.1 Parametric CUIVES e e e e e e 4
211 TangentsandNormals, 6
2.2 EIPSes e e 7
2.3 Polygons e 8
24 RenderingCurvesinOpenGL 8
3 Transformations 10
3.1 2D Transformations e 10
3.2 Affine Transformations e 11
3.3 Homogeneous Coordinates e 13
3.4 Uses and Abuses of Homogeneous Coordinates 14
3.5 Hierarchical Transformations @ uu.... .. 15
3.6 TransformationsinOpenGL uu.. 16
4 Coordinate Free Geometry 18
5 3D Objects 21
5.1 Surface Representations. e 21
5.2 Planes e e e 12
5.3 Surface Tangentsand Normals auu.. 22
5.3.1 CurvesonSurfaces e 2 2
5.3.2 ParametricForm 2 2
5.3.3 ImplicitForm 32
5.4 ParametricSurfaces e e e 24
541 BilnearPatch.42
542 Cylinder 25
5.4.3 Surfaceof Revolution, 26
544 Quadric e 26
545 PolygonalMesh 27
5.5 3D Affine Transformations 27
5.6 Spherical Coordinates e 29
5.6.1 Rotation of a Point AboutalLine. 29
5.7 Nonlinear Transformations @ . ma. 30
Copyright(© 2005 David Fleet and Aaron Hertzmann i

CSC418/CSCD18/CSC2504 CONTENTS

10

5.8 Representing Triangle Meshes, 30
5.9 Generating Triangle Meshes 31
Camera Models 32
6.1 ThinLensModel 32
6.2 Pinhole CameraModel 33
6.3 CameraProjections e 34
6.4 Orthographic Projection. e 35
6.5 Camera Position and Orientationo ... 36
6.6 Perspective Projection. e 38
6.7 Homogeneous Perspective e e 40
6.8 Pseudodepth 40
6.9 ProjectingaTriangle 41
6.10 CameraProjectionsinOpenGL 44
Visibility 45
7.1 TheViewWlumeand Clipping. 45
7.2 Backface Removal 6
7.3 TheDepthBuffer e 47
7.4 Painter's Algorithm e 48
7.5 BSPTrees e
7.6 VisibilityinOpenGL e 49
Basic Lighting and Reflection 51
8.1 Simple ReflectionModels. 51
8.1.1 DiffuseReflection 1
8.1.2 Perfect Specular Reflection. 52
8.1.3 General Specular Reflection 52
8.1.4 Ambientlllumination. 53
8.1.5 Phong Reflectance Model 3
8.2 LightinginOpenGL e 54
Shading 57
9.1 FlatShading e 57
9.2 Interpolative Shading e 57
9.3 ShadinginOpenGL e 58
Texture Mapping 59
10.1 OVEIVIEW o e e 59
10.2 TexXture SOUICES v v i e e e e e e e e e e e e e 59
10.2.1 Texture Procedures e 59
10.2.2 Digitallmages 60

Copyright(© 2005 David Fleet and Aaron Hertzmann i

48

CSC418/CSCD18/CSC2504 CONTENTS

10.3 Mapping from Surfaces into Texture Space e e 60
10.4 Textures and Phong Reflectance 61
105 Aliasing e 61
10.6 TexturinginOpenGL e 62
11 Basic Ray Tracing 64
11.1 BASICS . . . v o o e e e e e 4 6
112 Ray Casting o o o 56
11.3 Intersections e 65
11.3.1 Triangles e 6 6
11.3.2 General PlanarPolygons 0. 66
11.3.3 Spheres e 67
11.3.4 Affinely DeformedObjects, 67
11.35 Cylindersand Cones 8 6
11.4 The Scene Signature i i i 69
11.5 Efficiency e e 69
11.6 Surface Normals at Intersection Points 70
11.6.1 Affinely-deformed surfaces., 70
11.7 Shading 71
11.7.1 Basic (Whitted)Ray Tracing i 71
11.7.2 TexXture e e e e 72
11.7.3 Transmission/Refraction 72
11.7.4 Shadows e 73
12 Radiometry and Reflection 76
12.1 Geometryoflighting e 76
12.2 Elements of Radiometry e 81
12.2.1 Basic Radiometric Quantities 81
12.2.2 Radiance 83
12.3 Bidirectional Reflectance Distribution Function 85
12.4 Computing Surface Radiance e 86
12.5 ldealized Lighting and Reflectance Models e e e . 88
12.5.1 Diffuse Reflection 88
12.5.2 Ambient lllumination oo 89
12.5.3 SpecularReflection 90
12.5.4 Phong Reflectance Model 91
13 Distribution Ray Tracing 92
13.1 Problem statement 92
13.2 Numerical integration e 93
13.3 Simple Monte Carlo integration eu.... 94
iii

Copyright(© 2005 David Fleet and Aaron Hertzmann

CSC418/CSCD18/CSC2504 CONTENTS

13.4 Integrationatapixel 95
13.5 Shadingintegration e 95
13.6 Stratified Sampling e 96
13.7 Non-uniformly spaced points e 96
13.8 Importance sampling e 96
13.9 Distribution Ray Tracer 98
14 Interpolation 99
14.1 Interpolation BasiCs e 99
14.2 Catmull-Rom Splines e 101
15 Parametric Curves And Surfaces 104
15.1 Parametric CUrves o e 104
15.2 BRZIEr CUIVES o i e e e e e e e e e e 104
15.3 Control Point Coefficients 105
15.4 Bezier Curve Properties 106
15.5 Rendering ParametricCurves e e 108
15.6 BezierSurfaces 910
16 Animation 110
16.1 OVEIVIEW o o e e e e e e e 110
16.2 Keyframing 112
16.3 Kinematics e 113
16.3.1 Forward Kinematics 113
16.3.2 InverseKinematics 113
16.4 MotionCapture e e 114
16.5 Physically-Based Animation e 115
16.5.1 Single 1D Spring-Mass System o 116
16.5.2 3D Spring-Mass Systems 117
16.5.3 Simulation and Discretization 117
16.5.4 Particle Systems 118
16.6 Behavioral Animation 118
16.7 Data-Driven Animation e e 120

Copyright(© 2005 David Fleet and Aaron Hertzmann \Y

CSC418/CSCD18/CSsC2504 Acknowledgements

Conventions and Notation

Vectors have an arrow over their variable name: Points are denoted with a bar instead:
Matrices are represented by an uppercase letter.

When written with parentheses and commas separating elsjpeenisider a vector to be a column
vector. Thatis(z,y) = { ;j } Row vectors are denoted with square braces and no commas:

[y}Z(%y)T:{Zj]T-

The set of real numbers is representedfbyThe real Euclidean plane &2, and similarly Eu-

clidean three-dimensional spaceRis. The set of natural numbers (non-negative integers) is rep-
resented bw.

There are some notable differences between the conventsmtsin these notes and those found
in the course text. Here, coordinates of a pgi@re written a,, p,, and so on, where the book
uses the notation,, y,, etc. The same is true for vectors.

Aside:
Text in “aside” boxes provide extra background or inforroatthat you are not re
quired to know for this course.

Acknowledgements

Thanks to Tina Nicholl for feedback on these notes. Alex igplbulos assisted with electronic
preparation of the notes, with additional help from Patfzkeman.

Copyright(© 2005 David Fleet and Aaron Hertzmann Vv

CSC418/CSCD18/CSsC2504 Introduction to Graphics

1 Introduction to Graphics

1.1 Raster Displays

The screen is represented by a 2D array of locations cpileds.

Zooming in on an image made up of pixels

The convention in these notes will follow that of OpenGL,qitey the origin in the lower left
corner, with that pixel being at locatidf, 0). Be aware that placing the origin in the upper left is
another common convention.

One of2" intensities or colors are associated with each pixel, whéis the number of bits per
pixel. Greyscale typically has one byte per pixel, 28r= 256 intensities. Color often requires
one byte per channel, with three color channels per pixdl:gs=en, and blue.

Color data is stored in frame buffer. This is sometimes called an image map or bitmap.

Primitive operations:

e setpixel (x, y, color)
Sets the pixel at positiofx, y) to the given color.

e getpi xel (x, Vy)
Gets the color at the pixel at position,).

Scan conversionis the process of converting basic, low level objects intirticorresponding
pixel map representations. This is often an approximatbdhé object, since the frame buffer is a
discrete grid.

Copyright(© 2005 David Fleet and Aaron Hertzmann 1

CSC418/CSCD18/CSC2504

Introduction to Graphics

Scan conversion of a circle

L (7, 4)

{1, 2)\)_-:‘

1.2 Basic Line Drawing

Set the color of pixels to approximate the appearance okaflom (zo, yo) t0 (21, y1).

It should be

e “straight” and pass through the end points.

¢ independent of point order.

¢ uniformly bright, independent of slope.

The explicit equation for a line ig = mx + b.

Note:

the line. Considet, = mxzo + b andy; =

Given two pointszy, yo) and(z1, y;) that lie on a line, we can solve fat andb for

Subtracty, from y; to solve form = £=2 ”0 andb = yo — mxg.
Substituting in the value fdr, this equatlon can be written gs= m(z — zy) + yo.

Consider this simple line drawing algorithm:

int x
float m vy
m= (yl - y0) / (x1 - x0)
for (x = x0; x <= x1; ++x) {
y =m=* (x - x0) + y0
set pi xel (x, round(y), linecolor)

}

Copyright(© 2005 David Fleet and Aaron Hertzmann

CSC418/CSCD18/CSsC2504 Introduction to Graphics

Problems with this algorithm:

e If 1 < xo nothing is drawn.
Solution: Switch the order of the points if; < x.

e Consider the cases when< 1 andm > 1:

(@m<1 (b) m >1

A different number of pixels are on, which implies differdmightness between the two.
Solution:Whenm > 1, loop overy = vy . . . y; instead ofr, thenz = %(y — Yo) + Zo.

¢ Inefficient because of the number of operations and the ueating point numbers.
Solution: A more advanced algorithm, called Bresenham’s Line DrawitgpAthm.

Copyright(© 2005 David Fleet and Aaron Hertzmann

CSC418/CSCD18/CSC2504 Curves

2 Curves

2.1 Parametric Curves
There are multiple ways to represent curves in two dimeission

e Explicit: y = f(x), givenz, find y.

Example:
The explicit form of a line isy = max + b. There is a problem with this
representation—what about vertical lines?

e Implicit: f(z,y) = 0, or in vector form,f(p) = 0.

Example:
The implicit equation of a line throughy andp, is

(z —20) (11 — Yo) — (¥ — Yo) (71 — 7o) = 0.

Intuition:
— The direction of the line is the vectdr= p; — py.

— So a vector fronp, to any point on the line must be parallelcfo
— Equivalently, any point on the line must have direction frogrperpendic;
ular tod* = (d,, —d,) = 7.
This can be checked with- d* = (d,, d,) - (d,, —d,) = 0.
— So for any poinf on the line,(p — po) - 7 = 0.
Hereri = (y; — yo, o — x1). This is called aaormal.
— Finally, (p — po) - 7 = (z — o, ¥ — %) - (11 — Yo, xo — 1) = 0. Hence, the
line can also be written as:

@—m%ﬁ=0

Example:
The implicit equation for a circle of radiusand centep, = (., y.) IS

(:E - xc)Q + (y - yc)2 = T27

or in vector form,
15— pell” = .

Copyright(© 2005 David Fleet and Aaron Hertzmann 4

CSC418/CSCD18/CSC2504 Curves

e Parametric: p = f(\) wheref : R — R2, may be written ag(\) or (z()), y(\)).

Example:
A parametric line througl, andp, is

PN = po + A,

whered = D1 — Po-

Note that bounds oix must be specified:
— Line segment fronpy to p;: 0 < A < 1.
— Ray fromp, in the direction ofp;: 0 <)\ < .
— Line passing through, andp;: —oco < A < oo

Example:
What'’s the perpendicular bisector of the line segment betwgandp,?

— The midpoint isi(\) where = 1, that is,f + 1d = 2t
— The line perpendicular tp(\) has direction parallel to the normal pf)),

which isi = (1 — yo, — (21 — x0)).

Hence, the perpendicular bisector is the lfe) = (ﬁo + %(f) + arf.

Example:) -
Find the intersection of the linés\) = p, + Adp and f(p) = (p — p1) - 151 = 0.

Substitute /(\) into the implicit equationf(p) to see what value of\
satisfies it:

FUN) = (Po+Ado—pr) - i

=)\Ci()'ﬁl_(ﬁl_ﬁ())‘ﬁl
= 0

Therefore, ifcfo -1y # 0,

P (pl :pO) "
dy - 14

)

and the intersection point i$*). If d} 111 = 0, then the two lines are parallel
with no intersection or they are the same line.

Copyright(© 2005 David Fleet and Aaron Hertzmann 5

CSC418/CSCD18/CSC2504 Curves

Example:
The parametric form of a circle with radiugor 0 < A < 1is

p(A) = (rcos(2mA), rsin(2mw))).

1”4

This is the polar coordinate representation of a circle. r&tae an infinite
number of parametric representations of most curves, ssicirades. Can yo
think of others?

| =

An important property of parametric curves is that it is e@sgenerate points along a curve
by evaluatings()\) at a sequence of values.

2.1.1 Tangents and Normals

Thetangentto a curve at a point is the instantaneous direction of theecufhe line containing
the tangent intersects the curve at a point. It is given bylth&ative of the parametric form\)

with regard to\. That is,)
() = dp(\) _ (d:z:(/\) dy()\)> '

dA d\ 7 dA

Thenormal is perpendicular to the tangent direction. Often we norpedine normal to have unit
length. For closed curves we often talk about an inwardafa@ind an outward-facing normal.
When the type is unspecified, we are usually dealing with awana-facing normal.

T(A)
n(A) tangent
normal
M)
curve

We can also derive the normal from the implicit form. The nalat a pointp = (z,y) on a curve
defined byf(p) = f(z,y) =0 1s:

i) = Vil = (L,)

Derivation:
For any curve in implicit form, there also exists a parancetepresentatiop(\) =

Copyright(© 2005 David Fleet and Aaron Hertzmann 6

CSC418/CSCD18/CSC2504

Curves

choice of\, we have:

0

0

0
0

0= f(z(A),y(N)

We can differentiate both side with respect\to

d
S F @), 5()

of dz(\) 8f dy(\)
Or dx | Oy d\

VD), -TA)

(x(A),y(N)). All points on the curve must satisff(p) = 0. Therefore, for any

(1)
(2)

3)
(4)

This last line states that the gradient is perpendiculahéocurve tangent, which
the definition of the normal vector.

is

Example:

The implicit form of a circle at the origin isf (x, y) = 2*>+y*— R? = 0. The norma
at a point(z, y) on the circle isV f = (2z, 2y).

Exercise: show that the normal computed for a line is the saegardless of whether it is com-

puted using the parametric or implicit forms. Try it for ahet surface.

2.2 Ellipses

o Implicit: j’;—i + ?;—2 = 1. This is only for the special case where the ellipse is cedtat the

origin with the major and minor axes aligned with= 0 andx = 0.

e Parametric: z(\) = acos(27)\), y(A\) = bsin(27w\), or in vector form

\

=
N

>
y

=[]

Copyright(© 2005 David Fleet and Aaron Hertzmann

CSC418/CSCD18/CSC2504 Curves

The implicit form of ellipses and circles is common becaumsé is no explicit functional form.
This is becausg is a multifunction ofz.

2.3 Polygons
A polygonis a continuous, piecewise linear, closed planar curve.

A simple polygon is non self-intersecting.

A regular polygon is simple, equilateral, and equiangular.

An n-gonis a regular polygon with sides.

A polygon isconvexif, for any two points selected inside the polygon, the liegreent
between them is completely contained within the polygon.

Example:

To find the vertices of an-gon, findn equally spaced points on a circle.
A

Y

In polar coordinates, each vertéx;, y;) = (r cos(6;), rsin(6;)), wheref; = 2= for
1=0...n—1.

e To translate: Addz., y.) to each point.
e To scale: Change.
e To rotate: AddA#d to eacly,.

2.4 Rendering Curves in OpenGL

OpenGL does not directly support rendering any curves dttarlines and polylines. However,
you can sample a curve and draw it as a line strip, e.g.,:

float Xx, vy;

gl Begi n(G._LI NE_STRI P) ;
for (int t=0 ; t <=1 ; t += .01)

Copyright(© 2005 David Fleet and Aaron Hertzmann 8

CSC418/CSCD18/CSC2504 Curves

conmputeCurve(t, &, &y);
gl Vertex2f(x, y);

}
gl End()

You can adjust the step-size to determine how many line segne draw. Adding line segments
will increase the accuracy of the curve, but slow down theleeimg.

The GLU does have some specialized libraries to assist \eiieigating and rendering curves. For
example, the following code renders a disk with a hole indfster, centered about theaxis.

G.Uquadric g = gl uNewQuadric();
gl ubDi sk(q, innerRadius, outerRadius, sliceCount, 1);
gl uDel et eQuadric(q);

See the OpenGL Reference Manual for more information on tleeganes.

Copyright(© 2005 David Fleet and Aaron Hertzmann 9

CSC418/CSCD18/CSC2504 Transformations

3 Transformations

3.1 2D Transformations

Given a point cloud, polygon, or sampled parametric cunecan use transformations for several
purposes:

1. Change coordinate frames (world, window, viewport, devetc).

2. Compose objects of simple parts with local scale/postioentation of one part defined
with regard to other parts. For example, for articulatectotsj.

3. Use deformation to create new shapes.

4. Useful for animation.

There are three basic classes of transformations:
1. Rigid body - Preserves distance and angles.
e Examples: translation and rotation.
2. Conformal - Preserves angles.
e Examples: translation, rotation, and uniform scaling.
3. Affine - Preserves parallelism. Lines remain lines.

e Examples: translation, rotation, scaling, shear, andatadie.

Examples of transformations:

e Translation by vectort: p, = po + t.

Y
Y

e Rotation counterclockwise by: p; = { Z?s((g)) _Czlsr(lég) } Do .

Copyright(© 2005 David Fleet and Aaron Hertzmann 10

CSC418/CSCD18/CSC2504 Transformations

Uniform scaling by scalara: p; = { a0]po.

A A

Y
Y

Nonuniform scaling by a« andb: p; = { 8 2]po.

A A

/—>

>
>

\4

Shearby scalarh: p; = [(1) }f }ﬁo.

S

Reflectionabout they-axis: p; = { _01 (1)]po.

L~

Y

3.2 Affine Transformations

An affine transformation takes a poinp to ¢ according ta; = F(p) = Ap + t, a linear transfor-
mation followed by a translation. You should understandfétiewing proofs.

Copyright(© 2005 David Fleet and Aaron Hertzmann 11

CSC418/CSCD18/CSC2504 Transformations

e The inverse of an affine transformation is also affine, assgiiexists.

Proof:

Let§ = Ap+ ¢ and assumel ' exists, i.edet(A) # 0.

ThenAp = g — ¢, sop = A~1g — A~'f. This can be rewritten gs= Bg + d,
whereB = A~' andd = —A~'%,

Note:
The inverse of a 2D linear transformation is

g _Jab o d —b
e d Cad—be| —¢ a |

¢ Lines and parallelism are preserved under affine transfoonsa

Proof:
To prove lines are preserved, we must show #tay = F(I())) is a line, where

F(p) = Ap+tandi(\) = py + Ad.

g = AN+t
= A(po+ M)+t
= (Apo+1) + \Ad

This is a parametric form of a line throughp, + ¢ with direction Ad.

e Given a closed region, the area under an affine transformaiio+ ¢ is scaled bylet(A).

Note:

— Rotations and translations hawvet(A) = 1.

a 0
0 b] hasdet(A) = ab.

— Singularities havelet(A) = 0.

— ScalingA = {

Example:

) 1
The matrixA = { 00

region will become zero. We havkt(A) = 0, which verifies that any closed
region’s area will be scaled by zero.

maps all points to the-axis, so the area of any closed

Copyright(© 2005 David Fleet and Aaron Hertzmann 12

CSC418/CSCD18/CSC2504 Transformations

e A composition of affine transformations is still affine.

Proof:
Let Fl(]j) — Alﬁ —|— tl andFQ(ﬁ) - Agp —|— t2.
Then,

F(p) = F(Fi(p))
Ay(Ap+1) + 1
= AAip+ (Aot +1o).

Letting A = A, A, andt = Aty + £5, we haveF(p) = Ap + t, and this is an
affine transformation.

3.3 Homogeneous Coordinates

Homogeneous coordinateare another way to represent points to simplify the way inclvhwe
express affine transformations. Normally, bookkeepingld/ecome tedious when affine trans-
formations of the formdp + ¢ are composed. With homogeneous coordinates, affine transfo
tions become matrices, and composition of transformat®@as simple as matrix multiplication.
In future sections of the course we exploit this in much mawerful ways.

Givenp in homogeneous coordinates, to getve dividep by its last component and discard the
last component.

— 3

With homogeneous coordinates, a pgirs augmented with a 1, to forfp= {

All points (ap, o) represent the same poinfor reala # 0.

Example:
The homogeneous pointg,4,2) and (1,2,1) both represent the Cartesian pa
(1,2). It's the orientation of that matters, not its length.

nt

Many transformations become linear in homogeneous coatebn including affine transforma-
tions:
4z a b Pz [t:r
= +
{qy] [Cd]{py} _ty}

B a b t, Pz
o c d t Py

= [A t]p

Copyright(© 2005 David Fleet and Aaron Hertzmann 13

CSC418/CSCD18/CSC2504 Transformations

To producej rather thang, we can add a row to the matrix:

8

RS P LA
qzﬁTlpzcdtyp.
0 0 1

This is linear! Bookkeeping becomes simple under compasitio

Example:
Fg(FQ(Fl(ﬁ))), WherEFZQj) = Al(p) + t: becomeSMgMQMlﬁ, WhereMz =

o' 1|

With homogeneous coordinates, the following propertieaffafie transformations become appar-
ent:

o Affine transformations are associative.
For affine transformations;, 5, andF;,

(F3 o} FQ) O F1 = F3 @) (F2 o F1>

e Affine transformations areot commutative.
For affine transformations| and £,

FQOFI#FloFQ.

3.4 Uses and Abuses of Homogeneous Coordinates

Homogeneous coordinates provide a different representadr Cartesian coordinates, and cannot
be treated in quite the same way. For example, consider tlpaint between two pointg, =
(1,1) andp, = (5,5). The midpoint is(p; + p2)/2 = (3,3). We can represent these points
in homogeneous coordinates gas = (1,1,1) andp, = (5,5,1). Directly applying the same
computation as above gives the same resulting pgiht3, 1). However, we caralso represent
these points ag} = (2,2,2) andp, = (5,5,1). We then havep| + p,)/2 = (7/2,7/2,3/2),
which cooresponds to the Cartesian pd@int3, 7/3). This is a different point, and illustrates that
we cannot blindly apply geometric operations to homogeseowrdinates. The simplest solution
is to always convert homogeneous coordinates to Cartesian coongtes. That said, there are
several important operations that can be performed cdyriederms of homogeneous coordinates,
as follows.

Copyright(© 2005 David Fleet and Aaron Hertzmann 14

CSC418/CSCD18/CSC2504 Transformations

Affine transformations. An important case in the previous section is applying an affians-
formation to a point in homogeneous coordinates:

—

F(p) = Ap+t (5)
h LT (6)

= Ap= (2
It is easy to see that this operation is correct, since reggraldoes not change the result:

Ky K

Alap) = a(Ap) = af = (e, ayf/,)" (7)

which is the same geometric point@s- (z/,7/,1)7

Vectors. We can represent a vector= (z,y) in homogeneous coordinates by setting the last
element of the vector to be zero= (z, y,0). However, when adding a vector to a point, the point
must have the third component be 1.
g = p+v (8)
@y,)" = (2p,yp, 1) + (2,9,0) 9)

The result is clearly incorrect if the third component of tleetor is not 0.

Aside:
Homogeneous coordinates are a representation of poiptsjective geometry.

3.5 Hierarchical Transformations

It is often convenient to model objects as hierarchicallyreerted parts. For example, a robot arm
might be made up of an upper arm, forearm, palm, and fingersatiRgtat the shoulder on the
upper arm would affect all of the rest of the arm, but rotatimgforearm at the elbow would affect
the palm and fingers, but not the upper arm. A reasonablerbigrahen, would have the upper
arm at the root, with the forearm as its only child, which imtaonnects only to the palm, and the
palm would be the parent to all of the fingers.

Each part in the hierarchy can be modeled in its own localdioates, independent of the other
parts. For a robot, a simple square might be used to modeladatle upper arm, forearm, and
so on. Rigid body transformations are then applied to eachrekative to its parent to achieve
the proper alignment and pose of the object. For exampldijrigers are positioned to be in the
appropriate places in the palm coordinates, the fingers alna jogether are positioned in forearm
coordinates, and the process continues up the hierarctgn ahransformation applied to upper
arm coordinates is also applied to all parts down the hiagarc

Copyright(© 2005 David Fleet and Aaron Hertzmann 15

CSC418/CSCD18/CSC2504 Transformations

3.6 Transformations in OpenGL

OpenGL manages twé x 4 transformation matrices: thmodelview matrixand theprojection
matrix. Whenever you specify geometry (usiggVer t ex), the vertices are transformed by the
current modelview matrix and then the current projectiotrmaHence, you don’t have to perform
these transformations yourself. You can modify the entsfédbese matrices at any time. OpenGL
provides several utilities for modifying these matriceBeTmodelview matrix is normally used to
represent geometric transformations of objects; the ptioje matrix is normally used to store the
camera transformation. For now, we’ll focus just on the nivides matrix, and discuss the camera
transformation later.

To modify the current matrix, first specify which matrix isigg to be manipulated: ugg Mat r i xMbde(GL_MODE
to modify the modelview matrix. The modelview matrix canritie initialized to the identity with

gl Loadl denti ty(). The matrix can be manipulated by directly filling its valuesultiplying it

by an arbitrary matrix, or using the functions OpenGL pregido multiply the matrix by specific
transformation matriceg(Rot at e, gl Tr ansl at e, andgl Scal e). Note that these transforma-

tions right-multiply the current matrix; this can be confusing since it means ybat specify
transformations in the reverse of the obvious order. Egercivhy does OpenGL right-multiply

the current matrix?

OpenGL provides atacksto assist with hierarchical transformations. There is daeksfor the
modelview matrix and one for the projection matrix. OpenGbvides routines for pushing and
popping matrices on the stack.

The following example draws an upper arm and forearm withukley and elbow joints. The
current modelview matrix is pushed onto the stack and poppddde end of the rendering, so,
for example, another arm could be rendered without the fibamstions from rendering this arm
affecting its modelview matrix. Since each OpenGL transfation is applied by multiplying a
matrix on the right-hand side of the modelview matrix, tr@nsformations occur in reverse order.
Here, the upper arm is translated so that its shoulder possi at the origin, then it is rotated,
and finally it is translated so that the shoulder is in its appate world-space position. Similarly,
the forearm is translated to rotate about its elbow positiben it is translated so that the elbow
matches its position in upper arm coordinates.

gl PushiMatri x();

gl Transl at ef (wor | dShoul der X, wor | dShoul derY, 0. 0f);

dr awShoul der Joi nt () ;

gl Rot at ef (shoul derRot ati on, 0.0f, 0.0f, 1.0f);

gl Transl at ef (- upper Ar nShoul der X, -upper Ar nShoul derY, 0.0f);
dr awUpper Ar nShape() ;

gl Transl at ef (upper Ar nEl bowX, upper Ar nEl bowy, 0. 0f);

Copyright(© 2005 David Fleet and Aaron Hertzmann 16

CSC418/CSCD18/CSC2504 Transformations

dr awEl bowdoi nt () ;

gl Rot at ef (el bowRot ati on, 0.0f, 0.0f, 1.0f);

gl Transl at ef (- f or ear nEl bowX, - f orear nEl bowy, 0. 0f);
dr awFor ear nShape() ;

gl PopMat ri x();

Copyright(© 2005 David Fleet and Aaron Hertzmann 17

CSC418/CSCD18/CSsC2504 Coordinate Free Geometry

4 Coordinate Free Geometry

Coordinate free geometry(CFG) is a style of expressing geometric objects and relsttbat
avoids unnecessary reliance on any specific coordinateray®epresenting geometric quantities
in terms of coordinates can frequently lead to confusiod, tarderivations that rely on irrelevant
coordinate systems.

We first define the basic quantities:

1. Ascalaris just a real number.
2. Apoint is a location in space. ttoes nohave any intrinsic coordinates.

3. Avectoris a direction and a magnitude.dbes nohave any intrinsic coordinates.

A point is not a vector: we cannot add two points together. Aot compute the magnitude of
a point, or the location of a vector.

Coordinate free geometry defines a restricted class of apesain points and vectors, even though
both are represented as vectors in matrix algebra. Theswitpoperations are thenly operations
allowed in CFG.

1. ||¢]|: magnitude of a vector.

2. p1 + U1 = P9, Or Uy = pp — py.. point-vector addition.
3. U + U, = U3.: vector addition
4

. avy = Uy vector scaling. It > 0, thent, is a new vector with the same directionisbut
magnitudex||v; ||. If « < 0, then the direction of the vector is reversed.

o

Uy - Uyt dot product= ||vy |||t] cos(€), whered is the angle between the vectors.

6. U1 X vy: cross product, wherg, andv, are 3D vectors. Produces a new vector perpedicular
to , and tov,, with magnitudé|v, || ||| sin(f). The orientation of the vector is determined
by the right-hand rule (see textbook).

7. >, a;U; = v: Linear combination of vectors
8. >, aip; = p,if Y, a; = 1: affine combination of points.

Copyright(© 2005 David Fleet and Aaron Hertzmann 18

CSC418/CSCD18/CSsC2504 Coordinate Free Geometry

Example:

® D1+ (P2 — P3) = P1 + U = Pa.
° 06]52—04131 204171 :?72.

. %(pl +p2) =p1 + %(ﬁ2 —p1) =p1+ %172253-

Note:
In order to understand these formulas, try drawing somestto illustrate differer
cases (like the ones that were drawn in class).

—

Note that operations that anetin the list are undefined.

These operations have a number of basic properties, emgmatvity of dot product:v; - 7o =
Uy - U, distributivity of dot product; - (Uy + U3) = ¥ - Ua + Uy - Us.

CFG helps us reason about geometry in several ways:

1. When reasoning about geometric objects, we only care dabeuntrinsic geometric prop-
erties of the objects, not their coordinates. CFG preventsams introducing irrelevant
concepts into our reasoning.

2. CFG derivations usually provide much more geometric fismifor the steps and for the
results. It is often easy to interpret the meaning of a CFG fitesmwhereas a coordinate-
based formula is usually quite opaque.

3. CFG derivations are usually simpler than using coordgaimce introducing coordinates
often creates many more variables.

4. CFG provides a sort of “type-checking” for geometric reasg. For example, if you derive
a formula that includes a term- v, that is, a “point dot vector,” then there may be a bug
in your reasoning. In this way, CFG is analogous to type-cimgcika compilers. Although
you could do all programming in assembly language — whiclhsdo® do type-checking
and will happily led you add, say, a floating point value to adiion pointer — most people
would prefer to use a compiler which performs type-checlking can thus find many bugs.

In order toimplemengeometric algorithms we need to use coordinates. Thesdiocabes are part
of the representation of geometry — they are not fundamémtalasoning about geometry itself.

Example:

CFG says that we cannot add two points; there is no meaningstopleration. Bu
what happens if we try to do so anyway, using coordinates?

Suppose we have two pointg; = (0,0) andp; = (1, 1), and we add them together
coordinate-wisepp, = po + p1 = (1,1). This is not a valid CFG operation, Qut
we have done it anyway just to tempt fate and see what happiassee that th

Copyright(© 2005 David Fleet and Aaron Hertzmann 19

CSC418/CSCD18/CSsC2504 Coordinate Free Geometry

resulting point is the same as one of the original poipts= p; .

Now, on the other hand, suppose the two points were repesseng different coor-
dinate frameg, = (1,1) andg; = (2,2). The pointsj, andg, are thesamepoints a
Po andpy, with the same vector between them, but we have just repesémem i

a different coordinate frame, i.e., with a different orighdding together the points
we getg, = go + ¢1 = (3, 3). This is adifferentpoint fromg, andg;, whereas before
we got the same point.

The geometric relationship of the result of adding two pook¢pends on the coordi-
nate system. There is no clear geometric interpretatioadding two points.

Aside:
It is actually possible to define CFG with far fewer axioms ttiaones listed above.
For example, the linear combination of vectors is simplyitoid and scaling of
vectors.

(€]

Copyright(© 2005 David Fleet and Aaron Hertzmann 20

CSC418/CSCD18/CSC2504 3D Objects

5 3D Objects

5.1 Surface Representations

As with 2D objects, we can represent 3D objectparametric andimplicit forms. (There are
also explicit forms for 3D surfaces — sometimes called “heigelds” — but we will not cover
them here).

5.2 Planes

e Implicit: (p — po) - 77 = 0, wherep, is a point inR? on the plane, and is a normal vector
perpendicular to the plane.

S

]
o

A plane can be defined uniquely by three non-colinear p@ints,, ps. Leta = p, — p; and
b = p3 — p1, S0a andb are vectors in the plane. Theh= @ x b. Since the points are not
colinear,||7|| # 0.

e Parametric: 5(a,) = po + ad + ﬂl;, fora, g € R.

Note:
This is similar to the parametric form of a linEo) = py + ad.

A planar patch is a parallelogram defined by bounds®@@and.

Example:
Let0<a<land0 < g <1:
/
_/
a/
/
/ /
i Y
Py b

Copyright(© 2005 David Fleet and Aaron Hertzmann 21

CSC418/CSCD18/CSC2504 3D Objects

5.3 Surface Tangents and Normals

Thetangentto a curve ap is the instantaneous direction of the curve.at

The tangent planeto a surface ap is analogous. It is defined as the plane containing tangent
vectors to all curves on the surface that go thropgh

A surface normal at a pointp is a vector perpendicular to a tangent plane.

5.3.1 Curves on Surfaces

The parametric formp(«, 3) of a surface defines a mapping from 2D points to 3D points:yever
2D point (o, 3) in R? corresponds to a 3D pointin R3. Moreover, consider a CUNvVig\) =
(a(A), B(A)) in 2D — there is a corresponding curve in 3D contained withmsurfacei*(\) =

p(N)).
5.3.2 Parametric Form

For a curver(\) = (z()),y(\), 2(A))T in 3D, the tangent is

() (dz(N) dy(N) dz()\)
d)\:(d)\’dA’dA>' (10)

For a surface point(«a, 3), two tangent vectors can be computed:

05 s
P and%. (11

Derivation:
Consider a poinfay, 3) in 2D which corresponds to a 3D poigtay, 5y). Define
two straight lines in 2D:

d(n) = (M, Bo)" (12)
é()\g) = (Oéo,)\Q)T (13)

T = $(d) (14)
() = s(d0a) (15)

Copyright(© 2005 David Fleet and Aaron Hertzmann 22

CSC418/CSCD18/CSC2504 3D Objects

Using the chain rule for vector functions, the tangents eSéhcurves are:
The normal ofs ata = g, 6 = Gy IS
oo = (5]) (5) a9

The tangent plane is a plane containing the surfacgat 3,) with normal vector equal to the
surface normal. The equation for the tangent plane is:

ii(cv, o) - (p — 5(w, o)) = 0. (19)

What if we used different curves in 2D to define the tangentgftaih can be shown that we get the
same tangent plane; in other words, tangent vectors of atilzizes through a given surface point
are contained within a single tangent plane. (Try this askancese).

Note:

The normal vector is not unique. fis a normal vector, then any vectef: is also
normal to the surface, far € R. What this means is that the normal can be scaled,
and the direction can be reversed.

5.3.3 Implicit Form

In the implicit form, a surface is defined as the set of pojhtbat satisfyf(p) = 0 for some
function f. A normal is given by the gradient ¢f,

n(p) = VD), (20)

whereV f = (8{;;@’ (23 a{g)) ‘

Derivation:
Consider a 3D curve(\) that is contained within the 3D surface, and that passes
throughp, at \,. In other words¢(\) = p, and

fer) = 0 (21)

Copyright(© 2005 David Fleet and Aaron Hertzmann 23

CSC418/CSCD18/CSC2504 3D Objects

for all \. Differentiating both sides gives:

of
I\

Expanding the left-hand side, we see:

0f _ 0foe, 0fde, 0foe.

= 0 (22)

- L 2
O\ Oor O\ Oy ON 0z O\ (23)
dc
= VIDI,- oY (24)

This last line states that the gradient is perpendiculahéocurve tangent, which
the definition of the normal vector.

is

Example:

pis: Vf=2(p—ec).

The implicit form of a sphere isf(p) = ||p — ¢[|* — R* = 0. The normal at a point

Exercise: show that the normal computed for a plane is theesaegardless of whether it is

computed using the parametric or implicit forms. (This wasealin class). Try it for
surface.

5.4 Parametric Surfaces
5.4.1 Bilinear Patch

A bilinear patch is defined by four points, no three of which are colinear.

ﬁ&l_l(a) Py

s T Po
Poo ﬂ?
(04
Givenpgo, poi, Pio, P11, define
() = (1—a)poo + apo,
Loy = (1 —a)por + apii.

Copyright(© 2005 David Fleet and Aaron Hertzmann

another

24

CSC418/CSCD18/CSC2504 3D Objects

Then connecty(«) and/; («) with a line:
p(a76> = (1 - ﬁ)%(a) + 6%(04)7
for0<a<landd<pg<l1.

Question: when is a bilinear patch not equivalent to a plaatch? Hint: a planar patch is defined
by 3 points, but a bilinear patch is defined by 4.

5.4.2 Cylinder

A cylinder is constructed by moving a point on a lih@long a planar curvgy(a) such that the
direction of the line is held constant.

If the direction of the lind is d, the cylinder is defined as
e, B) = pola) + Ad.
A right cylinder hasterpendicular to the plane containipg o).

A circular cylinder is a cylinder whergy(«) is a circle.

Example:
A right circular cylinder can be defined by («) = (r cos(a), rsin(«), 0), for 0 <
a < 2m, andd = (0,0, 1).

Sop(a, 5) = (rcos(a), rsin(a), 3), for0 < g < 1.

To find the normal at a point on this cylinder, we can use theligitpform
flr,y,2) =2+ y* —r?=0tofindVf = 2(z,y,0).

Using the parametric form directly to find the normal, we have

op) op

P r(—sin(«), cos(a), 0), and(’?ﬂ =(0,0,1), so
op Op _ :
e 75 (r cos(a)rsin(a), 0).

Note:
The cross product of two vectotis= (a1, as, as) andb = (b1, ba, b3) can

Copyright(© 2005 David Fleet and Aaron Hertzmann 25

CSC418/CSCD18/CSC2504 3D Objects

be found by taking the determinant of the matrix,

i ik
a; as as

by by b

5.4.3 Surface of Revolution

To form asurface of revolution, we revolve a curve in the-z plane,é(5) = (z(5),0, 2(3)),
about thez-axis.

Hence, each point ohtraces out a circle parallel to they plane with radiusz(3)|. Circles then
have the form(r cos(«), 7 sin(«v)), wherew is the parameter of revolution. So the rotated surface
has the parametric form

Example:
If ¢(5) is a line perpendicular to the-axis, we have a right circular cylinder.

A torus is a surface of revolution:

¢(B) = (d+ rcos(f),0,rsin(f3)).

5.4.4 Quadric

A quadric is a generalization of a conic section to 3D. The implicitnfioof a quadric in the
standard position is

ar? + by + 22 +d=0,
az® +by* + ez =0,

fora,b,c,d,e € R. There are six basic types of quadric surfaces, which deperide signs of the

parameters.

They are the ellipsoid, hyperboloid of one sheet, hypeidadd two sheets, elliptic cone, elliptic
paraboloid, and hyperbolic paraboloid (saddle). All bug thyperbolic paraboloid may be ex-
pressed as a surface of revolution.

Copyright(© 2005 David Fleet and Aaron Hertzmann 26

CSC418/CSCD18/CSC2504 3D Objects

Example:
An ellipsoid has the implicit form

ZE2 y2 22

§+b_2+§_1:0'

In parametric form, this is
5(a, B) = (asin(f) cos(a), bsin(B) sin(«), c cos(3)),

for 5 € [0, 7] anda € (—m, 7.

5.4.5 Polygonal Mesh

A polygonal meshis a collection of polygons (vertices, edges, and faces)p@dggons may be
used to approximate curves, a polygonal mesh may be usegtox@amate a surface.

edge

face

vertex

A polyhedronis a closed, connected polygonal mesh. Each edge must leldhatwo faces.
A facerefers to a planar polygonal patch within a mesh.
A mesh issimple when its topology is equivalent to that of a sphere. That isas no holes.

Given a parametric surfacg, (), we can sample values afand/ to generate a polygonal mesh
approximatings.

5.5 3D Affine Transformations

Three dimensional transformations are used for many eéifitgourposes, such as coordinate trans-
forms, shape modeling, animation, and camera modeling.

Copyright(© 2005 David Fleet and Aaron Hertzmann 27

CSC418/CSCD18/CSC2504 3D Objects

An affine transform in 3D looks the same as in 2B(p) = Ap + t for A € R¥3, p, € R%. A
homogeneous affine transformation is

F(p) = Mp, wherep = | ¥ | 11 = i{; t.
1 0" 1
Translation:A = I, ¢ = (t,,t,,t.).
Scaling: A = diag(s., s,, s), t = 0.
Rotation: A = R, = 0, anddet(R) = 1.

3D rotations are much more complex than 2D rotations, so wWecansider only elementary
rotations about the, y, andz axes.

For a rotation about the-axis, thez coordinate remains unchanged, and the rotation occurgin th
z-y plane. So iff = Rp, theng. = p.. That s,

¢ | | cos(f) —sin(h) Da
g | [sin@®) cos®) | [p]
Including thez coordinate, this becomes

cos(f) —sin(d) 0
R.(6) = | sin(f) cos(d) O
0 0 1

Similarly, rotation about the-axis is

1 0 0
R.(0)= | 0 cos(d) —sin(0)
0 sin(f) cos(@)

For rotation about thg-axis,
cos(f) 0 sin(0)

R,(0) = 0o 1 0
—sin(f) 0 cos(0)

Copyright(© 2005 David Fleet and Aaron Hertzmann 28

CSC418/CSCD18/CSC2504 3D Objects

5.6 Spherical Coordinates

Any three dimensional vectaf = (u,,u,,u.) may be represented ispherical coordinates

By computing a polar angle counterclockwise about theaxis from thez-axis and an azimuthal
angled counterclockwise about theaxis from ther-axis, we can define a vector in the appropriate
direction. Then it is only a matter of scaling this vectorhe torrect lengtiu2 + u2 + u2)~'/? to
match.

AZ

<y

\/ N
0

X -
uxy

Given angles) andd, we can find a unit vector as= (cos() sin(¢), sin(#) sin(¢), cos(¢)).

Uy
Uz

Given a vectoru, its azimuthal angle is given by = arctan() and its polar angle i =

w2 +u2)/2 A . .
arctan (%) This formula does not require tha@te a unit vector.

5.6.1 Rotation of a Point About a Line

Spherical coordinates are useful in finding the rotation goat about an arbitrary line. Let
[(A) = Mu with ||z|| = 1, and@ having azimuthal anglé and polar angles. We may compose

elementary rotations to get the effect of rotating a ppiabout/(\) by a counterclockwise angle
p:
1. Align « with the z-axis.

e Rotate by—6 about thez-axis sou goes to therz-plane.
e Rotate up to the-axis by rotating by—¢ about they-axis.

Henceg = R,(—¢)R.(—0)p

2. Apply a rotation by about thez-axis: R, (p).

Copyright(©) 2005 David Fleet and Aaron Hertzmann 29

CSC418/CSCD18/CSC2504 3D Objects

3. Invert the first step to move theaxis back tai: R.(0)R,(¢) = (R,(—¢)R.(—6))~ .
Finally, our formula isj = Rz(p)p = R.(0)R,(¢)R.(p)R,(—¢)R.(—0)p.

5.7 Nonlinear Transformations

Affine transformations are a first-order model of shape aeé&dion. With affine transformations,
scaling and shear are the simplest nonrigid deformationann@mn higher-order deformations
include tapering, twisting, and bending.

Example:
To create a nonlinear taper, instead of constantly scatingandy for all z, as in

a 0 0
g=10 b 0 |p,
0 0 1
let « andb be functions of, so
a(p,) 0 0
q= 0 b(p:) 0 |p
0 0 1

A linear taper looks likei(z) = ap + oy 2.
A quadratic taper would b&(z) = ag + a1z + a2

X X
/ éz / E z
y y

(c) Linear taper (d) Nonlinear taper

5.8 Representing Triangle Meshes

A triangle mesh is often represented with a list of vertices a list of triangle faces. Each vertex
consists of three floating point values for they, andz positions, and a face consists of three

Copyright(©) 2005 David Fleet and Aaron Hertzmann 30

CSC418/CSCD18/CSC2504 3D Objects

indices of vertices in the vertex list. Representing a meshwhy reduces memory use, since each
vertex needs to be stored once, rather than once for everytiaon; and this gives us connectivity
information, since it is possible to determine which fadesre a common vertex. This can easily
be extended to represent polygons with an arbitrary numbeertices, but any polygon can be
decomposed into triangles. A tetrahedron can be repreabeiitte the following lists:

Vertex index| x |y | z Face index Vertices
0 0/0(|0 0 0,1,2
1 1/0/0 1 0,31
2 0/1|0 2 1,3,2
3 0/0|1 3 2,3,0

Notice that vertices are specified in a counter-clockwigkenrso that the front of the face and
back can be distinguished. This is the default behavior foerL, although it can also be set
to take face vertices in clockwise order. Lists of normald &xture coordinates can also be
specified, with each face then associated with a list of estiand corresponding normals and
texture coordinates.

5.9 Generating Triangle Meshes

As stated earlier, a parametric surface can be sampled &yafera polygonal mesh. Consider the
surface of revolution

S(a, B) = [x(a)cos B, x(a)sin 3, z(a)]”
with the profileC'(a) = [x(«a), 0, z(«)]T andg € [0, 27].

To take a uniform sampling, we can use

a1 — Qp 2

Aa = , andASg = —,
n

wherem is the number of patches to take along thaxis, andn is the number of patches to take
around thez-axis.

Each patch would consist of four vertices as follows:

S(iAa, jAB) Sij
g — é’((l + 1)AO&,]A5) _ A§'fi+17]’ for 1€ [O,m — 1},
' S+ 1Aa, (j +1)AB) Sittj+1 |’ j€0,n—1]
S(iACY, (] + 1)A5) Si,j—f—l

To render this as a triangle mesh, we migsiselatehe sampled quads into triangles. This is
accomplished by defining trianglé3; and(Q);; given S;; as follows:

P = (Si,j7 i+1,j75i+1,j+1)7 andQ;; = (gi,jy 7i+1,j+1> gi,jJrl)

Copyright(© 2005 David Fleet and Aaron Hertzmann 31

CSC418/CSCD18/CSC2504 Camera Models

6 Camera Models

Goal: To model basic geometry of projection of 3D points, curvesl surfaces onto a 2D surface,
theview planeorimage plane

6.1 Thin Lens Model

Most modern cameras use a lens to focus light onto the viemefdiee., the sensory surface). This
is done so that one can capture enough light in a sufficiehtyt period of time that the objects do
not move appreciably, and the image is bright enough to slgmificant detail over a wide range

of intensities and contrasts.

Aside:
In a conventional camera, the view plane contains eithetgobactive chemicals;
in a digital camera, the view plane contains a charge-cougéice (CCD) array.
(Some cameras use a CMOS-based sensor instead of a CCD). Imihe bye, the
view plane is a curved surface called tle¢ina, and and contains a dense array of
cells with photoreactive molecules.

Lens models can be quite complex, especially for compoumslflaund in most cameras. Here we
consider perhaps the simplist case, known widely as thelehs model. In the thin lens model,
rays of light emitted from a point travel along paths throtigé lens, convering at a point behind
the lens. The key quantity governing this behaviour is dattesfocal lengthof the lens. The
focal length, | f|, can be defined as distance behind the lens to which rays inonfiaitely distant
source converge in focus.

surface point

view plane

W optical axis

0 1

More generally, for the thin lens model, 4f is the distance from the center of the lens (i.e., the
nodal point) to a surface point on an object, then for a foeagth| f|, the rays from that surface
point will be in focus at a distancg behind the lens center, whereandz, satisfy the thin lens

equation:
1 1 1
=t — (25)

|\ 20 1

Copyright(© 2005 David Fleet and Aaron Hertzmann 32

CSC418/CSCD18/CSC2504 Camera Models

6.2 Pinhole Camera Model

A pinhole camera is an idealization of the thin lens as aperture shtmkero.

view plane
\~>%
infinitesimal
pinhole

Light from a point travels along a single straight path tlyloa pinhole onto the view plane. The
object is imaged upside-down on the image plane.

Note:

We use a right-handed coordinate system for the camerathéth-axis as the hor
izontal direction and thg-axis as the vertical direction. This means that the optical
axis (gaze direction) is the negativeaxis.

y

Here is another way of thinking about the pinhole model. $8pp/ou view a scene with one eye
looking through a square window, and draw a picture of whatgee through the window:

(Engraving by Albrecht Drer, 1525).

Copyright(© 2005 David Fleet and Aaron Hertzmann 33

CSC418/CSCD18/CSC2504 Camera Models

The image you'd get corresponds to drawing a ray from the egéipn and intersecting it with
the window. This is equivalent to the pinhole camera modeadept that the view plane is in front
of the eye instead of behind it, and the image appears rdg¥sp, rather than upside down. (The
eye point here replaces the pinhole). To see this, cons@gng rays from scene points through a
view plane behind the eye point and one in front of it:

1

For the remainder of these notes, we will consider this camsydel, as it is somewhat easier to
think about, and also consistent with the model used by OpenG

Aside:

The earliest cameras were room-sized pinhole camerasgcalinera obscura You
would walk in the room and see an upside-down projection efalitside world on
the far wall. The wordcamerais Latin for “room;” camera obscuraneans “dark
room.”

18th-century camera obscuras. The camera on the right usésaa in the roof tg
project images of the world onto the table, and viewers méatedhe mirror.

6.3 Camera Projections

Consider a poinp in 3D space oriented with the camera at the origin, which wetwa project
onto the view plane. To projegt, to y, we can use similar triangles to get= pizpy. This is
perspective projection

Note thatf < 0, and the focal length igf|.

In perspective projection, distant objects appear sméilbar near objects:

Copyright(© 2005 David Fleet and Aaron Hertzmann 34

CSC418/CSCD18/CSC2504 Camera Models

Yy
A 4

Y

) Py

pinhole image

Figure 1: *

Perspective projection

The man without the hat appears to be two different sizes\ thaigh the two images of him have
identical sizes when measured in pixels. In 3D, the man withioe hat on the left is about 18
feet behind the man with the hat. This shows how much you neagpect size to change due to
perspective projection.

6.4 Orthographic Projection

For objects sufficiently far away, rays are nearly paradiatj variation irp. is insignificant.

Copyright(© 2005 David Fleet and Aaron Hertzmann 35

CSC418/CSCD18/CSC2504 Camera Models

Here, the baseball players appear to be about the same eigixels, even though the batter
is about 60 feet away from the pitcher. Although this is amepie of perspective projection, the
camera is so far from the players (relative to the camerd fergth) that they appear to be roughly
the same size.

In the limit, y = ap,, for some real scalat. This isorthographic projection:

y

image

6.5 Camera Position and Orientation

Assume camera coordinates have their origin at the “ey@h@ie) of the camera.

y \4

N

\

Y

Figure 2:

Let g be the gaze direction, so a vector perpendicular to the viewep(parallel to the camera
z-axis) is

i —— (26)
9]

Copyright(©) 2005 David Fleet and Aaron Hertzmann 36

CSC418/CSCD18/CSC2504 Camera Models

We need two more orthogonal vectarsandv to specify a camera coordinate frame, witland

v parallel to the view plane. It may be unclear how to choosentdéectly. However, we can
instead specify an “up” direction. Of course this up directwill not be perpendicular to the gaze
direction.

Let ¢ be the “up” direction (e.g., toward the sky ge- (0, 1,0)). Then we wani to be the closest
vector in the viewplane to. This is really just the projection af onto the view plane. And of
courseyu must be perpendicular tandw. In fact, with these definitions it is easy to show tiat
must also be perpendiculartpso one way to computéandd from ¢ andg is as follows:

T =10 x i (27)

U= —

Of course, we could have use many different “up” directi@slong ag x @ # 0.

Using these three basis vectors, we can defoanaera coordinate systemin which 3D points are
represented with respect to the camera’s position andtatien. The camera coordinate system
has its origin at the eye poiatand has basis vectois v, andw, corresponding to the, y, andz
axes in the camera’s local coordinate system. This explainswe chosei to point away from
the image plane: the right-handed coordinate system megjtiatz (and, henceyw) point away
from the image plane.

Now that we know how to represent the camera coordinate fraitien the world coordinate
frame we need to explicitly formulate the rigid transforroatfrom world to camera coordinates.
With this transformation and its inverse we can easily esppoints either in world coordinates or
camera coordinates (both of which are necessary).

To get an understanding of the transformation, it might dpfbeto remember the mapping from
points in camera coordinates to points in world coordinakes example, we have the following
correspondences between world coordinates and camediates: Using such correspondences

Camera coordinatgs:., y., z.) | World coordinatesz, y, z)
(0,0,0) é
(0,0, f) e+ fu
(0,1,0) e+ v
0,1, f) e+ U+ fuw

it is not hard to show that for a general point expressed inetarooordinates g8 = (z., y., zc),
the corresponding point in world coordinates is given by

pY = e+ x4+ Yo+ zl (28)
= [4 0 @ p-+e (29)
= M. p° +é (30)

Copyright(© 2005 David Fleet and Aaron Hertzmann 37

CSC418/CSCD18/CSC2504 Camera Models

where
u;y v wy
Mcw = [u v 'U_J'} = Uy Vo W2 (31)

us V3 wWs

Note: We can define the same transformation for points in lg@meous coordinates:

- M., e
- [<)

Now, we also need to find the inverse transformation, i.@mfworld to camera coordinates.
Toward this end, note that the matri¥,.,, is orthonormal. To see this, note that vectarsy
and,« are all of unit length, and they are perpendicular to onelarotYou can also verify this

by computingM % M.,,,. Becausell,,, is orthonormal, we can express the inverse transformation
(from camera coordinates to world coordinates) as

o= ML({pY —é)

- chﬁw - d,
ar)
whereM,,. = ML = | &7 |.(why?),andl = ML e.
=T
w

In homogeneous coordinatgs,= M,,.p*”, where

- ch _ché
i = | T

_ ch 6 I —e
B O A T Y IO B
This transformation takes a point from world to camera-eesd coordinates.

6.6 Perspective Projection

Above we found the form of the perspective projection ushmitiea of similar triangles. Here we
consider a complementary algebraic formulation. To begeare given

e apointp° in camera coordinatesw space),
e center of projection (eye or pinhole) at the origin in camsyardinates,

e image plane perpendicular to theaxis, through the poin0, 0, f), with f < 0, and

Copyright(©) 2005 David Fleet and Aaron Hertzmann 38

CSC418/CSCD18/CSC2504 Camera Models

¢ line of sight is in the direction of the negativeaxis (in camera coordinates),
we can find the intersection of the ray from the pinholgtavith the view plane.

The ray from the pinhole tp° is 7(\) = A(p° — 0).
The image plane has norm@l, 0, 1) = 7 and contains the poirfd, 0, f) = f. So a pointz© is on

the plane wheriz® — f) - 77 = 0. If ¢ = (x°, y¢, z¢), then the plane satisfie§ — f = 0.

To find the intersection of the plané = f and rayi(\) = \p®, substitute”into the plane equation.
With p¢ = (ps, p5;, p%), we haverp: = f, so* = f/p¢, and the intersection is

)= (rE) = (B 20) =0 (32)
R U
The first two coordinates of this intersectiohdetermine the image coordinates.

2D points in the image plane can therefore be written as

AR
y* Ps L Py 01 0 ps

The mapping fronp* to (z*, y*, 1) is calledperspective projection

Note:
Two important properties of perspective projection are:

e Perspective projection preserves linearity. In other wptle projection of
3D line is a line in 2D. This means that we can render a 3D lirggnant by
projecting the endpoints to 2D, and then draw a line betwbese points in
2D.

e Perspective projection does not preserve parallelism:parallel lines in 3D
do not necessarily project to parallel lines in 2D. When tloggmted lines inter
sect, the intersection is calledranishing point, since it corresponds to a pojnt
infinitely far away. Exercise: when do parallel lines praojecparallel lines an
when do they not?

8

=N

Aside:

The discovery of linear perspective, including vanishimgngs, formed a cornef-
stone of Western painting beginning at the Renaissance. ©wtlier hand, defying
realistic perspective was a key feature of Modernist pagnti

To see that linearity is preserved, consider that rays fromtp on a line in 3D through a pinhole
all lie on a plane, and the intersection of a plane and the enpdane is a line. That means to draw
polygons, we need only to project the vertices to the imageghnd draw lines between them.

Copyright(© 2005 David Fleet and Aaron Hertzmann 39

CSC418/CSCD18/CSC2504 Camera Models

6.7 Homogeneous Perspective

The mapping of° = (pg, p;, ps) to 7° = px,py,pz) is just a form of scaling transformation.
However, the magnitude of the scaling d}épends on the géptho it’s not linear.

Fortunately, the transformation can be expressed linéerlgs a matrix) in homogeneous coordi-
nates. To see this, remember that (p, 1) = a(p, 1) in homogeneous coordinates. Using this
property of homogeneous coordinates we can writas

(p D5, s &)
T y? z) f

As usual with homogeneous coordinates, when you scale tmed@neous vector by the inverse
of the last element, when you get in the first three elememiseisisely the perspective projection.
Accordingly, we can express' as a linear transformation ¢f:

e = Myp-.

o O OO

0
0
1
1f

Try multiplying this out to convince yourself that this albwks.
Flnally, M is called the homogeneous perspective matrix, and gihee M,,.p”, we havei* =

M, ch

o O O
OO = O

6.8 Pseudodepth

After dividing by its last element;* has its first two elements as image plane coordinates, and its
third element isf. We would like to be able to alter the homogeneous persmamm!trlxM SO
that the third element o@ encodes depth while keeping the transformation linear.

ldea: Let i* = % 802" = ;%(@pi +0).

S O O
o O = O
o ot O O

1/f

What should: andb be? We would like to have the following two constraints:

.] —1 whenpt =f
T 1 whenp¢ =F ~

0
0
a
/

wheref gives us the position of theear plane, andF’ gives us the: coordinate of théar plane.

Copyright(© 2005 David Fleet and Aaron Hertzmann 40

CSC418/CSCD18/CSC2504 Camera Models

So—1=af+bandl =af +bk. Then2 =bL —b=1b (L — 1), and we can find

2F
b= —.
f—F

Substituting this value fob back in, we get-1 = af + f_—FF and we can solve far:

Lo L (i . 1)
fANf-F
B _l(2F N f—F)
f\f-F [f=-F
1 (f + F)
f\f=-F)
These values of andb give us a functiorz*(p<) that increases monotonically @$ decreases

(sincept is negative for objects in front of the camera). Hengecan be used to sort points by
depth.

Why did we choose these values foandb? Mathematically, the specific choices do not matter,
but they are convenient for implementation. These are asedlues that OpenGL uses.

What is the meaning of the near and far planes? Again, for coemee of implementation, we will
say that only objects between the near and far planes abdevi€dbjects in front of the near plane
are behind the camera, and objects behind the far plane@fartaway to be visible. Of course,
this is only a loose approximation to the real geometry ofwleeld, but it is very convenient
for implementation. The range of values between the nearfamplane has a number of subtle
implications for rendering in practice. For example, if ys®t the near and far plane to be very far
apart in OpenGL, then Z-buffering (discussed later in therse) will be very inaccurate due to
numerical precision problems. On the other hand, movingtte® close will make distant objects
disappear. However, these issues will generally not aftexdering simple scenes. (For homework
assignments, we will usually provide some code that avtiese problems).

6.9 Projecting a Triangle

Let's review the steps necessary to project a triangle frbjaah space to the image plane.

1. Atriangle is given as three vertices in an object-baseddioate framepy, p3, ps.

Copyright(© 2005 David Fleet and Aaron Hertzmann 41

CSC418/CSCD18/CSC2504 Camera Models

\ >

- X
P

P ¥
z
A triangle in object coordinates.

2. Transform to world coordinates based on the object'sstoamation: p{’, py, py, where

~

ﬁ;ﬂ - Mowﬁ?'

e
w
z P2
Yy
A A
w
P
e
w
P
X
z

The triangle projected to world coordinates, with a caméra a

3. Transform from world to camera coordinatgs= M., j".

Copyright(© 2005 David Fleet and Aaron Hertzmann 42

CSC418/CSCD18/CSC2504 Camera Models

z

The triangle projected from world to camera coordinates.

4. Homogeneous perspective transformation:= Mppg, where

10 0 0 Dy
~ |01 0 0 e Dy
M, = 00 a bl 0%~ apl +b

P

0 0 1/f O 7

5. Divide by the last component:
. 2
xr p%
* _ Py
y _f S
z* ap$+b
PE
(L
Ps
A x
P
A %
Ps
(-1,-1,-1)

The triangle in normalized device coordinates after pertspedivision.

Copyright(© 2005 David Fleet and Aaron Hertzmann 43

CSC418/CSCD18/CSC2504 Camera Models

Now (z*,y*) is an image plane coordinate, antis pseudodepth for each vertex of the
triangle.

6.10 Camera Projections in OpenGL

OpenGL's modelview matrix is used to transform a point frobject or world space to camera
space. In addition to this,@ojection matrixis provided to perform the homogeneous perspective
transformation from camera coordinatesctip coordinatesbefore performing perspective divi-
sion. After selecting the projection matrix, tgeFr ust umfunction is used to specify a viewing
volume, assuming the camera is at the origin:

gl Matri xMode(GL_PRQIECTI ON) ;

gl Loadl dentity();

gl Frustum(left, right, bottom top, near, far);
For orthographic projectiomyl Ort ho can be used instead:

glOtho(left, right, bottom top, near, far);

The GLU library provides a function to simplify specifyingparspective projection viewing frus-
tum:

gl uPer spective(fiel dOF Vi ew, aspectRatio, near, far);

The field of view is specified in degrees about ihaxis, so it gives the vertical visible angle. The
aspect ratio should usually be the viewport width over iiglig to determine the horizontal field
of view.

Copyright(© 2005 David Fleet and Aaron Hertzmann 44

CSC418/CSCD18/CSC2504 Visibility

7 Visibility

We have seen so far how to determine how 3D points projecteaacdéimera’s image plane. Ad-
ditionally, we can render a triangle by projecting eachesetb 2D, and then filling in the pixels
of the 2D triangle. However, what happens if two trianglesjgxt to the same pixels, or, more
generally, if they overlap? Determining which polygon tader at each pixel isisibility. An
object is visible if there exists a direct line-of-sight twat point, unobstructed by any other ob-
jects. Moreover, some objects may be invisible becausedtesipehind the camera, outside of the
field-of-view, or too far away.

7.1 The View Volume and Clipping

Theview volumeis made up of the space between the near plgremd far planeF'. Itis bounded
by B, T, L, andR on the bottom, top, left, and right, respectively.

The angular field of view is determined By B, T', L, andR:

T
o
e f
B
T-B

From this figure, we can find thain(«) =

1
2
Clipping is the process of removing points and parts of objects tleadaiside the view volume.

We would like to modify our homogeneous perspective tramsédion matrix to simplify clipping.
We have

1 0 0 0
R 0 1 0 0
W00 H(8E) #5
00 —1/f 0

Since this is a homogeneous transformation, it may be ntieldiipy a constant without changing

Copyright(© 2005 David Fleet and Aaron Hertzmann 45

CSC418/CSCD18/CSC2504 Visibility

its effect. Multiplying M, by f gives us

0 0 0
0 f 0 0

F\ 2fF
00 —(#E) 2
0 0 1 0

2f R+L
I T
2 0 73 T-B 0 5
= [+F 2f F)
0 0 - (ﬁ) -F
0 0 1 0

then, after projection, the view volume becomes a cube widdsssat—1 and+1. This is called
the canonical view volumeand has the advantage of being easy to clip against.

Note:
The OpenGL command glFrustum(l, r, b, t, n, f) takes the distao the near and
far planes rather than the position on thexis of the planes. Hence, the n used by
glFrustum is our— f and the f used by glFrustum isF'. Substituting these values
into our matrix gives exactly the perspective transfororatnatrix used by OpenGL.

7.2 Backface Removal

Consider a closed polyhedral object. Because it is closedidarof the object will always be invis-
ible, blocked by the near side. This observation can be uwsaddelerate rendering, by removing
back-faces.

Example:
For this simple view of a cube, we have three backfacing pmigg the left side,
back, and bottom:

Only the near faces are visible.

We can determine if a face is back-facing as follows. Suppaseompute a normals for a mesh
face, with the normal chosen so that it points outside theatlifor a surface point on a planar

Copyright(© 2005 David Fleet and Aaron Hertzmann 46

CSC418/CSCD18/CSC2504 Visibility

patch and eye poirtt, if (p —) - 7 > 0, then the angle between the view direction and normal
is less tharp0°, so the surface normal points away fremThe result will be the same no matter
which face poinp we use.

Hence, if(p — €) - 7 > 0, the patch is backfacing and should be removed. Otherwisgghtbe
visible. This should be calculated in world coordinatests® patch can be removed as early as
possible.

Note:
To computeri, we need three vertices on the patch, in counterclockwiderpas
seen from the outside of the objegt, p1, andps. Then the unit normal is

(P2 — P1) % (Ps — P1)
(P2 — 1) x (P — po)l|

Backface removal is a “quick reject” used to accelerate renge It must still be used together
with another visibility method. The other methods are moqgeasive, and removing backfaces
just reduces the number of faces that must be considered loyeaaerpensive method.

7.3 The Depth Buffer

Normally when rendering, we compute an image buffer , j) that stores the color of the object
that projects to pixe{, j). The depthi of a pixel is the distance from the eye point to the object.
The depth buffer is an arrayzbuf (i, j) which stores, for each pixél, j), the depth of the
nearest point drawn so far. It is initialized by setting atpth buffer values to infinite depth:
zbuf (i,]) = oc.

To draw colore at pixel(i, j) with depthd:

if d < zbuf(i, j) then
put pi xel (i, j, c)
zbuf (i, j) =d

end

When drawing a pixel, if the new pixel's depth is greater tHandurrent value of the depth buffer
at that pixel, then there must be some object blocking thepirgl, and it is not drawn.
Advantages

e Simple and accurate

¢ Independent of order of polygons drawn

Copyright(© 2005 David Fleet and Aaron Hertzmann 47

CSC418/CSCD18/CSC2504 Visibility

Disadvantages
e Memory required for depth buffer

e Wasted computation on drawing distant points that are drawem with closer points that
occupy the same pixel

To represent the depth at each pixel, we can use pseudoddpt is available after the homo-
geneous perspective transformatiohen the depth buffer should be initialized to 1, since the
pseudodepth values are betweehand 1. Pseudodepth gives a number of numerical advantages
over true depth.

To scan convert a triangular polygon with verticgs z,, andzs, pseudodepth values, ds, and

ds, and fill colorc, we calculate the values and pseudodepths for each edge at each scanline. Then
for each scanline, interpolate pseudodepth between edgesoampare the value at each pixel to
the value stored in the depth buffer.

7.4 Painter’s Algorithm

The painter’s algorithm is an alternative to depth buffering to attempt to ensuré tthe closest
points to a viewer occlude points behind them. The idea igaodhe most distant patches of a
surface first, allowing nearer surfaces to be drawn over them

In the heedless painter’s algorithm, we first sort faces g to depth of the vertex furthest from
the viewer. Then faces are rendered from furthest to nearest

There are problems with this approach, however. In somescagace that occludes part of another
face can still have its furthest vertex further from the \éewhan any vertex of the face it occludes.
In this situation, the faces will be rendered out of orderslpolygons cannot intersect at all as
they can when depth buffering is used instead. One solusida split triangles, but doing this
correctly is very complex and slow. Painter’s algorithmaesety used directly in practice; however,
a data-structure called BSP trees can be used to make psigggotithm much more appealing.

7.5 BSP Trees

The idea ofbinary space partitioning trees (BSP trees) is to extend the painter’s algorithm to
make back-to-front ordering of polygons fast for any eyatamn and to divide polygons to avoid
overlaps.

Imagine two patched;; and7s, with outward-facing normalg; andris.

1The OpenGL documentation is confusing in a few places — ‘iieiptused to mean pseudodepth, in commands
like gl ReadPi xel s andgl uUnPr oj ect .

Copyright(© 2005 David Fleet and Aaron Hertzmann 48

CSC418/CSCD18/CSC2504 Visibility

T,
/<”2
-1
n
! .o

If the eye pointe, and7; are on the same side @i, then we drawl; beforeT;. Otherwise,l;
should be drawn beforEg,.

We know if two points are on the same side of a plane contaifjrigy using the implicit equation
for T3,

iz = (@—p)-7. (33)

If 7 is on the planef,(z) = 0. Otherwise, iff;(z) > 0, 7 is on the “outside” ofl}, and if
f1(z) < 0, zis “inside.”

Before any rendering can occur, the scene geometry must loegsed to build a BSP tree to
represent the relative positions of all the facets with eesfo their inside/outside half-planes. The
same BSP tree can be used for any eye position, so the tree aslipbe constructed once if
everything other than the eye is static. For a single scheeg tare many different BSP trees that
can be used to represent it — it's best to try to constructiuad trees.

The tree traversal algorithm to draw a tree with réois as follows:

if eye is in the outside half-space of F
draw faces on the inside subtree of F
draw F
draw faces on the outside subtree of F

el se
draw faces on the outside subtree of F
draw F (if backfaces are drawn)
draw faces on the inside subtree of F

end

7.6 Visibility in OpenGL

OpenGL directly supports depth buffering, but it is ofteedisn addition to other visibility tech-
niques in interactive applications. For example, many gause a BSP tree to prune the amount
of static map geometry that is processed that would othernas be visible anyway. Also, when

Copyright(© 2005 David Fleet and Aaron Hertzmann 49

CSC418/CSCD18/CSC2504 Visibility

dealing with blended, translucent materials, these abjefitén must be drawn from back to front
without writing to the depth buffer to get the correct appeae. For simple scenes, however, the
depth buffer alone is sufficient.

To use depth buffering in OpenGL with GLUT, the OpenGL cohtaust be initialized with mem-
ory allocated for a depth buffer, with a command such as

gl utlnitbDi spl ayMde(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
Next, depth writing and testing must be enabled in OpenGL.:
gl Enabl e(G._DEPTH _TEST) ;

OpenGL will automatically write pseudodepth values to thett buffer when a primitive is ren-
dered as long as the depth test is enabled.gl'mept hvask function can be used to disable depth
writes, so depth testing will occur without writing to thepdle buffer when rendering a primitive.

When clearing the display to render a new frame, the deptlebsiffould also be cleared:

gl O ear (GL_COLOR BUFFER BI T | GL_DEPTH BUFFER BI T);

Copyright(© 2005 David Fleet and Aaron Hertzmann 50

CSC418/CSCD18/CSsC2504 Basic Lighting and Reflection

8 Basic Lighting and Reflection

Up to this point, we have considered only the geometry of hbjeais are transformed and pro-
jected to images. We now discuss #tedingof objects: how the appearance of objects depends,
among other things, on the lighting that illuminates thensce@nd on the interaction of light with
the objects in the scene. Some of the basic qualitative piiep@f lighting and object reflectance
that we need to be able to model include:

Light source - There are different types of sources of light, such as psotces (e.g., a small
light at a distance), extended sources (e.g., the sky onualglday), and secondary reflections
(e.g., light that bounces from one surface to another).

Reflectance- Different objects reflect light in different ways. For expale, diffuse surfaces ap-
pear the same when viewed from different directions, wheegemnirror looks very different from
different points of view.

In this chapter, we will develop simplified model of lightitigat is easy to implement and fast to
compute, and used in many real-time systems such as Operi&mbdel will be an approxima-
tion and does not fully capture all of the effects we obsemvde real world. In later chapters, we
will discuss more sophisticated and realistic models.

8.1 Simple Reflection Models
8.1.1 Diffuse Reflection

We begin with the diffuse reflectance model. A diffuse susfescone that appears similarly bright
from all viewing directions. That is, the emitted light appgindependent of the viewing location.
Let p be a point on a diffuse surface with normallight by a point light source in directiofifrom
the surface. The reflected intensity of light is given by:

Lip) = 14l max(0,5-n) (34)

where! is the intensity of the light sourcey is the diffuse reflectance (or albedo) of the surface,
ands'is the direction of the light source. This equation requihesvectors to be normalized, i.e.,
I51] = 1, |7 = 1]].

The s - 7 term is called thdoreshortening termWhen a light source projects light obliquely at
a surface, that light is spread over a large area, and lesgedight hits any specific point. For
example, imagine pointing a flashlight directly at a wallstes in a direction nearly parallel: in the
latter case, the light from the flashlight will spread overeager area, and individual points on the
wall will not be as bright.

Copyright(© 2005 David Fleet and Aaron Hertzmann 51

CSC418/CSCD18/CSsC2504 Basic Lighting and Reflection

For color rendering, we would specify the reflectance in c@s (74, 74.¢, r4.5)), and specify
the light source in color as well g, I, I5). The reflected color of the surface is then:

Ld,R(ﬁ) = Td,R [R max(O, S . ﬁ) (35)
Ld7g(]3) = T4aG]G IIlaX(O, § ﬁ) (36)
Ld,B(ﬁ) = rd,B IB maX(O, g ﬁ) (37)

8.1.2 Perfect Specular Reflection

For pure specular (mirror) surfaces, the incident lightrfreach incident directiod; is reflected
toward a unique emittant directioh. The emittant direction lies in the same plane as the intiden
directiond; and the surface norma| and the angle betweehandd, is equal to that betweenand

d:-. One can show that the emittant direction is givertfpyt 2(7 - d:)ﬁ — d_; (The derivation was

n

d; d,

covered in class). In perfect specular reflection, the leghitted in directioni, can be computed
by reflectingd, across the normal (&37: - d.)7i — d.), and determining the incoming light in this
direction. (Again, all vectors are required to be normalizethese equations).

8.1.3 General Specular Reflection

Many materials exhibit a significant specular componenheirtreflectance. But few are perfect
mirrors. First, most specular surfaces do not reflect dfitlignd that is easily handled by intro-
ducing a scalar constant to attenuate intensity. Seconst, specular surfaces exhibit some form
of off-axis specular reflectionThat is, many polished and shiny surfaces (like plastickraatals)
emit light in the perfect mirror direction and in some neadmections as well. These off-axis
specularities look a little blurred. Good exampleslghlightson plastics and metals.

More precisely, the light from a distant point source in tivection of 5'is reflected into a range

of directions about the perfect mirror directiofis= 2(7i - §)77 — 5. One common model for this is
the following:

Ly(d,) = roI max(0, 1 - d,)*, (38)

wherer, is called the specular reflection coefficidnis the incident power from the point source,
anda > 0 is a constant that determines the width of the specular igigisl. As« increases, the
effective width of the specular reflection decreases. Inlithé as « increases, this becomes a
mirror.

Copyright(© 2005 David Fleet and Aaron Hertzmann 52

CSC418/CSCD18/CSsC2504 Basic Lighting and Reflection

Specularity as a function of a and ¢

max(0,cos®)”
o o
S 0
T

o
w
T

Figure 3: Plot of specular intensity as a function of viewargyleg.

The intensity of the specular region is proportionaktax (0, cos ¢)*, whereg is the angle between

m andd,. One way to understand the nature of specular reflectiorpi®tahis function, see Figure
3.

8.1.4 Ambient lllumination

The diffuse and specular shading models are easy to computteften appear artificial. The
biggest issue is the point light source assumption, the wimsbus consequence of which is that
any surface normal pointing away from the light source,(fe: which §- 7 < 0) will have a
radiance of zero. A better approximation to the light sous@uniformambientterm plus a point
light source. This is a still a remarkably crude model, batituch better than the point source by
itself. Ambient illumintation is modeled simply by:

L,(p) =r41, (39)

wherer, is often called the ambient reflection coefficient, dpdenotes the integral of the uniform
illuminant.

8.1.5 Phong Reflectance Model

The Phong reflectance models perhaps the simplest widely used shading model in compute
graphics. It comprises a diffuse term (Eqn (81)), an ambemh (Eqn (82)), and a specular term

Copyright(© 2005 David Fleet and Aaron Hertzmann 53

CSC418/CSCD18/CSsC2504 Basic Lighting and Reflection

(Egn (85)):
L(p, Je) = rqglqy max(0,5- 1) + 141, + 715 max(0,m - cfe)a, (40)
where

e [, 1;,andl, are parameters that correspond to the power of the lightesdior the ambient,
diffuse, and specular terms;

r., Tq andrg are scalar constants, called reflection coefficients, thtrohine the relative
magnitudes of the three reflection terms;

« determines the spread of the specurlar highlights;

7 is the surface normal at

s'is the direction of the distant point source;

m is the perfect mirror direction, givemands’; and

andd, is the emittant direction of interest (usually the direntad the camera).

In effect, this is a model in which the diffuse and speculanponents of reflection are due to
incident light from a point source. Extended light sourced &he bouncing of light from one
surface to another are not modeled except through the amrtieien. Also, arguably this model
has more parameters than the physics might suggest; forpdeathe model does not constrain
the parameters to conserve energy. Nevertheless it is snesetiseful to give computer graphics
practitioners more freedom in order to acheive the appeartiey’re after.

8.2 Lighting in OpenGL

OpenGL provides a slightly modified version of Phong ligbtirighting and any specific lights
to use must be enabled to see its effects:

gl Enabl e(GL_LIGHTING ; [/ enable Phong lighting
gl Enabl e(GL_LI GHTO) ; /'l enable the first |ight source
gl Enabl e(GL_LI GHT1) ; /1 enable the second |ight source

Lights can be directional (infinitely far away) or position&ositional lights can be either point
lights or spotlights. Directional lights have thecomponent set to 0, and positional lights have
set to 1. Light properties are specified with thieLi ght functions:

Copyright(© 2005 David Fleet and Aaron Hertzmann 54

CSC418/CSCD18/CSsC2504 Basic Lighting and Reflection

G.float direction[] = {1.0f, 1.0f, 1.0f, 0.0f};
CGL.float position[] = {5.0f, 3.0f, 8.0f, 1.0f};

G float spotDirection[] = {0.0f, 3.0f, 3.0f};
Adfloat diffuseRGBA] = {1.0f, 1.0f, 1.0f, 1.0f};
d float specularRGBA[] = {1.0f, 1.0f, 1.0f, 1.0f};

/1 A directional I|ight

gl Lightfv(GL_LIGHTO, G._POCSI TI ON, direction);

gl Lightfv(G_LI GHTO, G._DI FFUSE, diffuseRGBA);
gl Lightfv(G._LI GHTO, GL_SPECULAR, specul ar RGBA);

/1 A spotlight

gl Lightfv(G_LIGHT1, G._POSITION, position);

gl Lightfv(G._LI GHT1, G._DI FFUSE, diffuseRGBA);

gl Lightfv(G_LI GHT1, G._SPOT_DI RECTI QON, spotDirection);
gl Lightf (G _LIGHT1, G._SPOT_CUTOFF, 45.0f);

gl Lightf(GL_LI GHT1, G._SPOT_EXPONENT, 30.0f);

OpenGL requires you to specify both diffuse and specularpmmants for the light source. This
has no physical interpretation (real lights do not haveftidg” or “specular” properties), but may
be useful for some effects. Tlye Mat eri al functions are used to specify material properties, for
example:

G.float diffuseRGA = {1.0f, 0.0f, 0.0f, 1.0f};
CGLfl oat specularRGBA = {1.0f, 1.0f, 1.0f, 1.0f};
gl Material fv(G._FRONT, G._DI FFUSE, diffuseRGBA);

gl Material fv(G._FRONT, G._SPECULAR, specul ar RGBA);
gl Material f (GL_FRONT, GL_SHI NI NESS, 3.0f);

Note that both lights and materials have ambient terms. thafdilly, there is a global ambient
term:

gl Lightfv(G._LI GHTO, G._AMBI ENT, anbi entLi ght);
gl Materi al fv(G._FRONT, G._AMBI ENT, anbi ent Material);
gl Li ght Model f v(GL_LI GHT_MODEL_AMBI ENT, anbi ent d obal) ;

The material has an emission term as well, that is meant tehagjects that can give off their
own light. However, no light is actually cast on other obgactthe scene.

gl Material fv(G_FRONT, GL._EM SSION, en);

The global ambient term is multiplied by the current matesimbient value and added to the
material’s emission value. The contribution from eachtlighthen added to this value.

When rendering an object, normals should be provided for & or for each vertex so that
lighting can be computed:

Copyright(© 2005 David Fleet and Aaron Hertzmann 55

CSC418/CSCD18/CSsC2504 Basic Lighting and Reflection

gl Nor mal 3f (nx, ny, nz);
gl Vertex3f(x, vy, z);

Copyright(© 2005 David Fleet and Aaron Hertzmann 56

CSC418/CSCD18/CSC2504 Shading

9 Shading

Goal: To use the lighting and reflectance model to shade facets ofyggnal mesh — that is, to
assign intensities to pixels to give the impression of opagpufaces rather than wireframes.

Assume we’re given the following:
e ¢ - center of projection in world coordinates
e [- point light source location
e [,. 1, -intensities of ambient and directional light sources
e 1., 14,7, - COefficients for ambient, diffuse, and specular reflecion

a - exponent to control width of highlights

9.1 Flat Shading

With flat shading, each triangle of a mesh is filled with a single color.

For a triangle with counterclockwise verticgs, p», andps, as seen from the outside, let the

__(P2—p1)x(P3—p1) ;
midpoint bep = (p1 + p2 + p3) with normal 7 (p2_p1) (pg pi)H Then we may find the

[
intensity atp using the Phong model and fill the polygon with that:

E = Iy, +rqy max(0,7 - §) + roly max(0,7-)%, (42)

wheres = =2 ¢= £ 2. andi = —5+ 2(5- 7).

Jw_ 5
[tw—pl* = llev— '|| !

Flat shading is a simple approach to filling polygons withocobut can be inaccurate for smooth
surfaces, and shiny surfaces. For smooth surfaces—whecbfn tesselated and represented as
polyhedra, using flat shading can lead to a very strong fagetifect. In other words, the surface
looks very much like a polyhedron, rather than the smootfasarit's supposed to be. This is
because our visual system is very sensitive to variationshading, and so using flat shading
makes faces really look flat.

9.2 Interpolative Shading

The idea ofinterpolative shadingis to avoid computing the full lighting equation at each pixg
interpolating quantites at the vertices of the faces.

Given vertice%, p2, andps, we need to compute the normals for each vertex, computethe r
ances for each vertex, project onto the window in device dioates, and fill the polygon using
scan conversion.

Copyright(© 2005 David Fleet and Aaron Hertzmann 57

CSC418/CSCD18/CSC2504 Shading

There are two methods used for interpolative shading:

Gouraud Shading The radiance values are computed at the vertices and thearlirinterpo-
lated within each triangle. This is the form of shading irmpéated in OpenGL.

Phong shading The normal values at each vertex are linearly interpolatiéaimveach triangle,
and the radiance is computed at each pixel.

Gouraud shading is more efficient, but Phong shading is nwmerate. When will Gouraud shad-
ing give worse results?

9.3 Shading in OpenGL

OpenGL only directly supports Gouraud shading or flat std@®ouraud is enabled by default,
computing vertex colors, and interpolating colors acraasgle faces. Flat shading can be enabled
with gl ShadeMbdel (GL_FLAT) . This renders an entire face with the color of a single vertex
giving a faceted appearance.

Left: Flat shading of a triangle mesh in Open@ight: Gouraud shading. Note that the mesh
appears smooth, although the coarseness of the geomeisibie at the silhouettes of the mesh.

With pixel shaderon programmable graphics hardware, it is possible to aeHrhong shading
by using a small program to compute the illumination at eaghlpvith interpolated normals. It
is even possible to userermal mapto assign arbitrary normals within faces, with a pixel sltade
using these normals to compute the illumination.

Copyright(© 2005 David Fleet and Aaron Hertzmann 58

CSC418/CSCD18/CSC2504 Texture Mapping

10 Texture Mapping

10.1 Overview

We would like to give objects a more varied and realistic @paece through complex variations
in reflectance that convey textures. There are two main eswtnatural texture:

e Surface markings — variations @bedo(i.e. the total light reflected from ambient and
diffuse components of reflection), and

e Surface relief — variations in 3D shape which introducesleariability in shading.

We will focus only on surface markings.

Examples of surface markings and surface relief

These main issues will be covered:

o Where textures come from,

How to map textures onto surfaces,

How texture changes reflectance and shading,
e Scan conversion under perspective warping, and

e Aliasing

10.2 Texture Sources
10.2.1 Texture Procedures

Textures may be defined procedurally. As input, a procedegeires a point on the surface of
an object, and it outputs the surface albedo at that poirdnipkes of procedural textures include
checkerboards, fractals, and noise.

Copyright(© 2005 David Fleet and Aaron Hertzmann 59

CSC418/CSCD18/CSsC2504 Texture Mapping

o,
S,
N

(e

S

!

1]
|
\

i
|
| ll
IllI

A procedural checkerboard pattern applied to a teapot. bekerboard texture comes from the
OpenGL programming guide chapter on texture mapping.

10.2.2 Digital Images

To map an arbitrary digital image to a surface, we can defixteite coordinategu, v) € [0, 1]2.
For each poinfug, vo] in texture space, we get a point in the corresponding image.

©01n (1, 1)

(0, 0) (1, 0)
Texture coordinates of a digital image

10.3 Mapping from Surfaces into Texture Space

For each face of a mesh, specify a pdint, v;) for vertexp,. Then define a continuous mapping

from the parametric form of the surfasé, 3) onto the texture, i.e. define such that i, v) =

m(a, B).

Example: .
For a planar patch(«, 3) = po + ad + b, whered < o < 1 and0 < g < 1.

Then we could usg = a andv = .

Copyright(© 2005 David Fleet and Aaron Hertzmann 60

CSC418/CSCD18/CSC2504 Texture Mapping

Example:
For a surface of revolution(a,) = (c.(a)cos(f), c.(a)sin(3), c.(«)). So let
0<a<land0<fg<2n.
Theny = aandv = 3/27.
0 (1,1
3D surface Texture space Image

10.4 Textures and Phong Reflectance

Scale texture values in the source image to be in the ranger < 1 and use them to scale the
reflection coefficients, andr,. That is,

Tq = Tra,

e = Trg.

We could also multiply- by the specular reflection, in which case we are simply sgalirirom
the Phong model.

10.5 Aliasing

A problem with high resolution texturing is aliasing, whiobcurs when adjacent pixels in a ren-
dered image are sampled from pixels that are far apart intareeknage. By down-sampling—

reducing the size of a texture—aliasing can be reduced foaviey or small objects, but then
textured objects look blurry when close to the viewer. Whatreadly want is a high resolution

texture for nearby viewing, and down-sampled textures fstadt viewing. A technique called

mipmappinggives us this by prerendering a texture image at severardiit scales. For example,
a 256x256 image might be down-sampled to 128x128, 64x643232k6x16, and so on. Then it
is up to the renderer to select the correct mipmap to reduasiag artifacts at the scale of the
rendered texture.

Copyright(© 2005 David Fleet and Aaron Hertzmann 61

CSC418/CSCD18/CSsC2504 Texture Mapping

An aliased high resolution texture image (left) and the stereire after mipmapping (right)

10.6 Texturing in OpenGL

To use texturing in OpenGL, a texturing mode must be enalfied.displaying a 2D texture on
polygons, this is accomplished with

gl Enabl e(GL_TEXTURE_2D) ;

The dimensions of texture in OpenGL must be powers of 2, atidrecoordinates are normalized,
so that(0, 0) is the lower left corner, andl, 1) is always the upper right corner. OpenGL 2.0,
however, does allow textures of arbitrary size, in whiched@sture coordinates are based on the
original pixel positions of the texture.

Since multiple textures can be present at any time, thereexturender with must be selected. Use
gl GenText ur es to create texture handles agidBi ndText ur e to select the texture with a given
handle. A texture can then be loaded from main memory wlithex! nage2D For example:

CLui nt handl es[2] ;
gl GenTextures(2, handles);

gl Bi ndText ure(G._TEXTURE_2D, handl es[0]);
/1 Initialize texture paraneters and | oad a texture with gl Texl nage2D

gl Bi ndText ure(G._TEXTURE 2D, handl es[1]);
/1 Initialize texture paranmeters and | oad another texture

Copyright(© 2005 David Fleet and Aaron Hertzmann 62

CSC418/CSCD18/CSC2504 Texture Mapping

There are a number of texture parameters that can be seeta #fé behavior of a texture, using
gl TexPar anet eri . For example, texture wrap repeating can be enabled to all@xture to be
tiled at the borders, or the minifying and magnifying funcis can be set to control the quality of
textures as they get very close or far away from the camera.t@tture environment can be set
with gl TexEnvi , which controls how a texture affects the rendering of theapives it is attached
to. An example of setting parameters and loading an imadmisi

gl TexEnvi (GL_TEXTURE_ENV, G._TEXTURE_ENV_MODE, G._MODULATE);

gl TexParaneteri (GL_TEXTURE_2D, GL_TEXTURE_ M N _FILTER, G._LI NEAR);

gl TexParaneteri (GL_TEXTURE_2D, G._TEXTURE WRAP_S, GL_REPEAT)

gl TexParaneteri (GL_TEXTURE 2D, G._TEXTURE WRAP_T, G._CLAWP)

gl Texl mge2D(G._TEXTURE_2D, 0, G._RGB, inmageWdth, imageHei ght,
0, G._RGEB, G._UNSI GNED BYTE, i nmgePointer);

Mipmaps can be generated automatically by using the GLUtioimg! uBui | d2DM praps in-
stead ofgl Tex!| mage2D.

Once a texture is bound and texturing is enabled, texturedowaies must be supplied for each
vertex, by callinggl TexCoor d beforegl Vert ex:

gl TexCoor d2f (u, v);
gl Vertex3f(x, vy, z);

When textures are no longer needed, they can be removed fegrdphics hardware memory
with

gl Del et eTextures(2, handl es);

Copyright(© 2005 David Fleet and Aaron Hertzmann 63

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11 Basic Ray Tracing

11.1 Basics

e So far, we have considered oncal models of illumination; they only account for incident
light coming directly from the light sources.

e Global models include incident light that arrives from other soefs, and lighting effects
that account for global scene geometry. Such effects ieclud
— Shadows
— Secondary illumination (such as color bleeding)
— Reflections of other objects, in mirrors, for example
e Ray Tracing was developed as one approach to modeling themiespof global illumina-
tion.
e The basic idea is as follows:
For each pixel:
— Cast a ray from the eye of the camera through the pixel, andtimérst surface hit by
the ray.

— Determine the surface radiance at the surface intersewitbra combination of local
and global models.

— To estimate the global component, cast rays from the sufaice to possible incident
directions to determine how much light comes from each toec This leads to a
recursive form for tracing paths of light backwards from $hieface to the light sources.

Aside:
Basic Ray Tracing is also sometimes called Whitted Ray Traciitey, s inventor
Turner Whitted.

Computational Issues

e Form rays.

Find ray intersections with objects.

Find closest object intersections.

Find surface normals at object intersection.

Evaluate reflectance models at the intersection.

Copyright(© 2005 David Fleet and Aaron Hertzmann 64

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11.2 Ray Casting
We want to find the ray from the eye through pixel;).

e Camera Model
e is the origin of the camera, in world space.
i, ¥, andw are the world space directions corresponding tothg andz axes in eye space.
The image plane is defined By — 7) - @ = 0, or 7 + a@ + b, wherer = eV + fib.

e Window
A window in the view-plane is defined by its boundaries in cear@ordinatesw;, w,., w,
andwy. (In other words, the left-most edge is the line, A, f).)

e Viewport
Let the viewport (i.e., output image) have coluntnsn, — 1 and rows0...n,, — 1. (0,0) is
the upper left entry.
The camera coordinates of pixgl j) are as follows:

ﬁfj = (w; + 1Au, w; + jAv, f)

Au = W~ W
Ne — 1
Av — Wy — Wy
n, — 1
In world coordinates, this is:
P = 1|1’ 1|7 117 py;+ e
L

e Ray: Finally, the ray is then defined in world coordinates #svics:
F(\) =LY + Ay

Whered:,j = @VZ —e&". For\ > 0, all points on the ray lie in front of the viewplane along a
single line of sight.

11.3 Intersections

In this section, we denote a ray@s\) = a + Ad, A > 0.

Copyright(© 2005 David Fleet and Aaron Hertzmann 65

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11.3.1 Triangles

Define a triangle with three points,, p,, andps;. Here are two ways to solve for the ray-triangle
intersection.

e Intersectr(\) with the plang(p — p;) - 7 = 0for i = (p, — p1) X (ps — p1) by substituting
7(A) for p and solving for\. Then test the half-planes for constraints. For example:

@+ —p1)-i=0

St

A — (pr—a) -

d-i
What does it mean wheh- 7 = 0? What does it mean wheh 77 = 0 and(p, — a) - 77 = 0?

e Solve fora and g wherep(a, B)p1 + a(p2 — p1) + B(ps — p1), i.e. 7(A) = a + M =
p1+ a(pe — p1) + B(ps — p1). This leads to the 3x3 system

| | | o
—(p2 — 1) —(Ps — D) d B = —a)
| | | A

Invert the matrix and solve fat, 3, and A\. The intersection is in the triangle when the
following conditions are all true:
a>0
8>0
a+ <1

11.3.2 General Planar Polygons

For general planar polygons, solve for the intersectiom he plane. Then form a ray(t) in

the plane, starting at the intersecti@i*). Measure the number of intersections with the polygon
sides fort > 0. If there is an even number of intersections, the intersads inside. If the number
of intersection is odd, it is outside.

Aside:
This is a consequence of the Jordan Curve Theorem. As relatibistproblem, it
states that two points are both inside or both outside whendmber of intersections
on a line between them is even.

Copyright(© 2005 David Fleet and Aaron Hertzmann 66

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11.3.3 Spheres

Define the unit sphere centeredcdty ||p — ¢||> = 1.
Substitute a point on the ray \) into this equation:

(@+M—¢) - (@+M—¢ —1=0
Expand this equation and write it in terms of the quadratiofo
AN +2BX+C =0

A=d-d
B=(a—2¢)-d
C=(@a—c)-(a—c)—1
The solution is then:
—2B 4+ +/4B2 —4A B
A\ = C_ vr_D B? — AC

2A A A’

If D < 0, there are no intersections. [If = 0, there is one intersection; the ray grazes the sphere.
If D > 0, there are two intersections with two values fgr\; and\,.

WhenD > 0, three cases of interest exist:

e)\; < 0and); < 0. Both intersections are behind the view-plane, and are sdilei
e \; > 0and\, < 0. Thep(\) is a visible intersection, byt(\,) is not.

e \; >)y and)\, > 0. Both intersections are in front of the view-plang..) is the closest
intersection.

11.3.4 Affinely Deformed Objects

Proposition: Given an intersection method for an object, it is easy tersect rays with affinely
deformed versions of the object. We assume here that the affinsformation is invertible.

e Let F(7) = 0 be the deformed version ¢i(z) = 0, wherej = Az + .
ie. F(y) = f(A'(y — 1)) = 0,50F(y) = 0iff f(z)=

e Given an intersection method fgi(z) = 0, find the intersection of(\) = a + Ad and
F(y) =0, whereX > 0.

e Solution: Substituter()) into the implicit equatiory = F(‘):
F(F(\) = f(ATH(F(A ﬂ)
f(A a+Ad t)

f(@ +)
- F ()

Copyright(© 2005 David Fleet and Aaron Hertzmann 67

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

where
a=A"'a—1)

d=A"'d
i.e. intersecting” (i) with 7()\) is like intersectingf (x) with 7 (\) = @ + Ad’ whereX > 0.
The value of\ found is the same in both cases.

e Exercise: Verify that, at the solution*, with an affine deformationy = Az + ¢, that
F(A*) = AF/(*) + 1.

11.3.5 Cylinders and Cones
A right-circular cylinder may be defined by + y? = 1 for |z| < 1. A cone may be defined by

2?4y’ —(1-2%)=0for0<z<1.

¢ Find intersection with "quadratic wall,” ignoring consimts onz, e.g. usings? + y? = 1 or
2?4+ y? — 1(1 — 2%) = 0. Then test the: component ofj(*) against the constraint on
eg.z<lorz<l1.

e Intersect the ray with the planes containing the base or eap £ = 1 for the cylinder).
Then test ther andy components ofi(*) to see if they satisfy interior constraints (e.g.
2?2 + y? < 1 for the cylinder).

o If there are multiple intersections, then take the intefeaavith the smallest positiv (i.e.,
closest to the start of the ray).

Copyright(© 2005 David Fleet and Aaron Hertzmann 68

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11.4 The Scene Signature

The scene signature is a simple way to test geometry inteyegunethods.

e Create an image in which pixél, j) has intensityt if object k is first object hit from ray
through(i, j).

e Each object gets one unique color.

Note:
Pseudo-Code: Scene Signature

< Construct scene model{obj, (A,7), objID} >
sig: array[nc, nr] of objlD
for j=0to nr-1 (loop over rows)
for i=0to nc-1 (loop over columns)
< Construct rayr;;(\) = p;; + A\(p;; — €) through pixelp;; >
)\i,j — OO
loop over all objects in scene, with object identifiers ohjlD
< find * for the closest intersection of the ray(\) and the object>
if A*>0 and A* <), ; then

A%j — AF
sig[i,j].objID « objID,
endif
endloop
endfor
endfor

11.5 Efficiency

Intersection tests are expensive when there are large marabebjects, and when the objects are
quite complex! Fortunately, data structures can be useddiol #esting intersections with objects
that are not likely to be significant.

Example: We could bound a 3D mesh or object with a simple bounding vel@eng. sphere or
cube). Then we would only test intersections with objecthére exists a positive intersection
with the bounding volume.

Example: We could project the extent onto the image plane so you da€tdrto cast rays to
determine potential for intersections.

Copyright(© 2005 David Fleet and Aaron Hertzmann 69

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11.6 Surface Normals at Intersection Points

Once we find intersections of rays and scene surfaces, andleat the first surface hit by the ray,
we want to compute the shading of the surface as seen frorayh&at is, we cast a ray out from
a pixel and find the first surface hit, and then we want to know hauch light leave the surface
along the same ray but in the reverse direction, back to theeca

Toward this end, one critical property of the surface geoyntitat we need to compute is the
surface normal at the hit point.

e For mesh surfaces, we might interpolate smoothly from famenals (like we did to get
normals at a vertex). This assumes the underlying surfasma®th.

e Otherwise we can just use the face normal.

e For smooth surfaces (e.g. with implicit forniép) = 0 or parametric forms(«, 3)), either

take -
=_ VI

IVf@)I]
or s
S S

. 9a X g

N =15 Os ||”

50 % a—ﬁﬂ

11.6.1 Affinely-deformed surfaces.
Let f(p) = 0 be an implicit surface, and l€}(p) = Ap + ¢ be an affine transformation, whese
is invertible. The affinely-deformed surface is

F(q)=fQ () =f(A"'(p—1) =0 (42)

A normal of F" at a pointg is given by
ATy
|| AT |

whereA~7 = (A~1T and7 is the normal off atp = Q~*(q).

(43)

Derivation:
Let s = 7(*) be the intersection point, and lgt — s) - 7 = 0 be the tangent plane
at the intersection point. We can also write this as:

(p—5)"i=0 (44)
Substituting inj = Ap + £ and solving gives:

(p—3s"1 = (A (g—1)—35"7 (45)

Copyright(© 2005 David Fleet and Aaron Hertzmann 70

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

= (— (As+8)TA TR (46)

In other words, the tangent plane at the transformed poistriitamal A~77 and
passes through poifiA 5 + £).

preserved so the tangent plane on the deformed surfacesisiopf A~ (G—t))"7 =
D.

This is the equation of a plane withnit normalﬁ.

11.7 Shading

Once we have cast a ray through pixel in the directionci;,j, and we've found the closest hit
point p with surface normaii, we wish to determine how much light leaves the surfageiato
the direction—J;j (i.e., back towards the camera pixel). Further we want refleth the light
from light sources that directly illuminate the surface aalvas secondary illumination, where
light from other surfaces shines on the surfacg. athis is a complex task since it involves all of
the ways in which light could illuminate the surface from different directions, and the myriad
ways such light interacts with the surface and it then echittereflected by the surface. Here we
will deal first with the simplest case, known widely as Whittealy Tracing.

Aside:

First, note that if we were to ignore all secondary reflegttben we could just com-
pute the Phong reflectance modepatnd then color the pixel with that value. Such
scenes would look similar to those that we have renderedjsiading techniques
seen earlier in the course. The main differences from eadreering techniques are
the way in which hidden surfaces are handled and the lackefgalation.

11.7.1 Basic (Whitted) Ray Tracing

In basic ray tracing we assume that that the light reflectenh fthe surface is a combination of
the reflection computed by the Phong model, along with onegpom@nt due to specular secondary
reflection. That is, the only reflection we consider is thag¢ ¢ln perfect mirror reflection. We
only consider perfect specular reflection for computati@ificiency; i.e., rather than consider
secondary illumination gt from all different directions, with perfect specular reflea we know
that the only incoming light gi that will be reflected in the directioml:’j will be that coming from

the corresponding mirror direction (i.ens = —Q(J;J 1))+ J;J). We can find out how much
light is incoming from directiomri be casting another ray into that direction frorand calculating
the light reflected from the first surface hit. Note that weengst described a recursive ray tracer;
i.e., in order to calculate the reflectance at a hit point wedrnte cast more rays and compute the
reflectance at the new hit points so we can calculate the imgphght at the original hit point.

In summary, for basic (Whitted) ray tracing, the reflectanceleh calculation comprises:

Copyright(© 2005 David Fleet and Aaron Hertzmann 71

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

e Alocal model (e.g., Phong) to account for diffuse and ofisapecular reflection (highlights)
due to light sources.

e An ambient term to approximate the global diffuse composient

e Cast rays fronp into directioniii, = —2(d; ; - 7)) + d; ; to estimate ideal mirror reflections
due to light coming from other ojects (i.e., secondary reéibed.

Forarayr(\) =a + Ad which hits a surface point poiptwith normal7, the reflectance is given
by

E =r.l,+rqlymax(0,7 - §) + rels max(0, ¢ m)* + rylgpec

wherer,, rq4, andr, are the reflection coefficients of the Phong modgl,/;, and/, are the light
source intensities for the ambient, diffuse and speculangeof the Phong modek is the light
source direction fronp, the emittant direction of interest &= —d:,j, andm = 2(5- 7)) — §is
the perfect mirror direction for the local specular reflectiFinally, ;.. is the light obtained from
the recursive ray cast into the directigi to find secondary illumination, ang is the reflection
coefficient that determines the fraction of secondary ilhation that is reflected by the surface at

p

11.7.2 Texture

e Texture can be used to modulate diffuse and a mbient reffectiefficients, as with Gouraud
shading.

e We simply need a way to map each point on the surface to a poiexiure space, as above,
e.g. given an intersection poipt*), convert into parametric form(«, 5) and us€«;, (3) to
find texture coordinate§, v).

e Unlike Gouraud shading, we don’t need to interpol@ter) over polygons. We get a new
(u, v) for each intersection point.

¢ Anti-aliasing and super-sampling are covered in the Oustion Ray Tracing notes.

11.7.3 Transmission/Refraction

e Light that penetrates a (partially or wholly) transparantace/material is refracted (bent),
owing to a change in the speed of light in different media.

e Snell's Law governs refraction:
sin 91 C1

sin 92 Co

Copyright(© 2005 David Fleet and Aaron Hertzmann 72

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

e The index of refraction is the ratio of light speedgc,. For example, the index of refraction
for passing from air to water i~ = 1.33, and for passing from air to glass, it 51— =
1.8. o
Note: There is also a wavelength dependence. We ignoredhes h

e Example:

— If ¢o < ¢, light bends towards the normal (e.g. air to water)c,lf< ¢, light bends
away from the normal (e.g. water to air).

— The critical anglé,., whenc, > ¢4, iIs whend; — 6. andf, — 90. Beyondd,, 6; > 6.,
and total internal reflection occurs. No light enters theanat.

e Remarks:

— The outgoing direction is in the plane of the incoming di@ttandr. This is similar
to the perfect specular direction.

— When#; = 0, thend, = 0, i.e. there is no bending.
e For ray tracing:
— Treat global transmission like global specular, i.e. casti@y.

— Need to keep track of the speed of light in the current medium.

11.7.4 Shadows

¢ A simple way to include some global effects with minimal wesko turn off local reflection
when the surface poigtcannot see light sources, i.e. whers in shadow.

e When computing? atp, cast a ray toward the light source, i.e. in the directiea (1 — p).
) =p" + A1 - p")

e Find the first intersection with a surface in the scene*lt the first intersection point is
0 < X <1, then there exists a surface that occludes the light sousogf.

— We should omit diffuse and specular terms from the local Bhondel.
— The surface radiance atbecomes

E = Ta]a + Tg]spec

Copyright(© 2005 David Fleet and Aaron Hertzmann 73

CSC418/CSCD18/CSsC2504 Basic Ray Tracing

Note:
Pseudo-Code: Recursive Ray Tracer

for each pixel (i)
< compute ray’;(\) = pi; + A&ij where &ij =Py —€ >
I =rayTrace(,;, dy;, 1);
setpixel(i, j,1)

endfor

rayTrace(a, b, depth)
findFirstHit(a, b, output varobj, A, p, n)
if A >0 then
I = rtShade(objp, i, —b, depth)
else
I = background;
endif
return()

findFirstHit (a, b, output varOBJ, \y,, Pn, 1in)
A =—1,
loop over all objects in scene, with object identifiers oljlD
< find A\« for the closest legitimate intersection of rgy(\) and object>
if (A, <0 or*<)\,) and * >0 then

Ap = A
Pr=4a+ \b;
< determine normal at hit point;, >
OBJ = objID,
endif
endloop

Copyright(© 2005 David Fleet and Aaron Hertzmann 74

CSC418/CSCD18/CSC2504

Basic Ray Tracing

Note:

rtShade(OBJ, p, 1, d., depth)
/* Local Component */
findFirstHit(p, 1 — p, output vartemp, \,);
if 0 <A, <1 then
I, = ambientTerm;
else
I, = phongModelp, n, d., OBJ.localparams)
endif
[* Global Component */
if depth< maxDepth then
if OBJ has specular reflection then
< calculate mirror directiom, = —Je +2n - &eﬁ >
I = rayTrace(, m,, depth+1)
< scalel,.. by OBJ.specularReflCoef
endif
if OBJ is refractive then
< calculate refractive directiot) >
if not total internal reflection then
I = rayTrace(, t, depth+1)
< scalel,.;, by OBJ.refractiveReflCoef
endif
endif
[g = Ispec + [refr
else
I, =0
endif
return(; + 1,)

Copyright(© 2005 David Fleet and Aaron Hertzmann

75

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

12 Radiometry and Reflection

Until now, we have considered highly simplified models ampbathms for computing lighting and
reflection. These algorithms are easy to understand andecamgdbemented very efficiently; how-
ever, they also lack realism and cannot achieve many impioviaual effects. In this chapter, we
introduce the fundamentals of radiometry and surface tefee that underly more sophisticated
models. In the following chapter, we will describe more athed ray tracing algorithms that take
advantage of these models to produce very realistic andaienmnany real-world phenomena.

12.1 Geometry of lighting

In our discussion of lighting and reflectance we will makeesal/simplifying assumptions. First,
we will ignore time delays in light propagation from one @do another. Second, we will assume
that light is not scattered nor absorbed by the median threwgch it travels, i.e., we will ignore
light scattering due to fog. These assumptions allow uscag®n thegeometryof lighting; i.e.,
we can assume that light travels along straight lines, aodriserved as it travels (e.g., see Fig. 1).

Light Tube

@)

Figure 4: Given a set of rays within a tube, passing throdgind B but not the sides of the tube,
the flux (radiant power) atl along these rays is equal to thatfatlong the same set of rays.

Before getting into the details of lighting, it will be usefid introduce three key geometric con-

cepts, namelydifferential areassolid angleandforeshortening Each of these geometric concepts
is related to the dependence of light on the distance andtatien between surfaces in a scene
that receive or emit light.

Area differentials: We will need to be able describe the amount of lighting thtirfy an area
on a surface or passing through a region of space. Integratimctions over a surface requires
that we introduce aarea differentialover the surface, denotefl. Just as a 1D differentiatif)
represents an infinitesimal region of the real line, an arffarential represents an infinitesimal
region on a 2D surface.

Example:
Consider a rectangular patéhn thex — y plane. We can specify points in the patch
in terms of ane coordinate and a coordinate, withe € [z, 1],y € [vo, y1]. We ca

Copyright(© 2005 David Fleet and Aaron Hertzmann 76

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

divide the plane intaV M rectangular subpatches, thyeth subpatch bounded by

v <x<x+ Ax 47)
y; <y <y +Ay (48)

wherei € [0...N —1],5 € [0...M — 1], Az = (21 — x0) /N andAy = (y1 — yo)/M.
The area of each subpatchds; = AzAy. In the limit asN — oo andM — oo,

dA = dxdy (49)

To compute the area of a smooth surféGeve can break the surface into many tiny
patcheq, j), each with area, ;, and add up these individual areas:

Area(S) = Z Ai,j (50)

In the planar patch above, the area of the patch is:

Area(S) = Z A j = NMAzAy = (1 — x0)(y1 — Yo) (51)

i7j

Computing these individual patch areas for other surfacédfisult. However, tak-
ing the infinite limit we get the general formula:

Area(S) :/sdA (52)

For the planar patch, this becomes:

[aa- / / dudy = (21 — 20) (31 — 1) (53)

We can create area differentials for any smooth surfacaufately, in most radiometry applica-
tions, we do not actually need to be able to do so for anythihgrahan a plane. We will use area
differentials when we integrate light on the image sensabicky happily, is planar. However, area
differentials are essential to many key definitions and eptgin radiometry.

Solid angle: We need to have a measureasfgular extenin 3D. For example, we need to be
able to talk about what we mean by the field of view of a camerd vee need a way to quantitfy
the width of a directional light (e.g., a spot light).

Copyright(© 2005 David Fleet and Aaron Hertzmann 77

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

Let's consider the situation in 2D first. In 2@ngular extents just the angle between two direc-
tions, and we normally specify angular extentadlians In particular, the angular extent between
two rays emanating from a poigtcan be measured using a circle centereg #tat is, the angular
extent (in radians) is just the circular arc lengtbf the circle between the two directions, divided
by radiusr of the circle,l/r (see Fig. 5). For example, the angular extent of an entictediraving
circumferenc@rr is just27 radians. A half-circle has arclengihr and spans radians.

‘ l
Figure 5: Angular extent in 2D is given yr (radians).

In 3D, the corresponding quantity to 2D angular extent itedadolid angle Analogous to the 2D
case, solid angle is measured as the areba patch on a sphere, divided by the squared radius of
the sphere (Figure 6); i.e.,

w == (54)

T

The unit of measure for solid angle is thteradian(sr). A solid angle oRr steradians corresponds
to a hemisphere of directions. The entire sphere has a sujjié @f 47 sr. As depicted in Figure
2, to find the solid angle of a surfacewith respect to a poing, one projectsS onto a sphere of
radiusr, centered af, along lines througly. This gives us:, so we then divide by? to find the
solid angle subtended by the surface. Note that the solittarig patch does not depend on the

radiusr, since the projected ar@ds proportional ta-2.

Figure 6: The solid angle of a patéhis given by the area of its projection onto a sphere of radius
r, divided by the squared radiug,

Note:
At a surface point with normat, we express the hemisphere of incident and emittant
directions in spherical coordinates. That is, directionge hemispheré are

d= (sin @ cos ¢, sin fsin ¢, cos)" (55)

Copyright(© 2005 David Fleet and Aaron Hertzmann 78

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

whered < [0,7/2] denotes the angle betwedrand the normal, ang € [—,)
measures the direction projected onto the surface.

With direction expressed in this way one can write the ingigiithal solid angle as
dw = sin 6 df do (56)
The infinitesimal solid angle is an area differential for thet sphere.

To see this, note that férheld fixed, if we vary) we trace out a circle of radiusn 0
that is perpendicular t@. For a small changéy, the circular arc has lengtin 6 d¢,
and therefore the area of a small ribbon of angular witdtis justsin 6 df de¢.

de
XK

sin0de

This also allows us to compute the finite solid angle for a @eaof visual direction,
such ag)y < 0 < 0, andgg < ¢ < ¢;. That is, to compute the solid angle we just
integrate the differential solid angle over this region amé sphere« = 1):

1 01
w = /% /90 sin@ df do (57)
b1
= / — cos 9\3; deo (58)
= (¢1 — ¢p)(cosby — cosb) (59)

(Assuming we are in the quadrant where this quantity is pe3it

Foreshortening: Another important geometric property fisreshorteningthe reduction in the
(projected) area of a surface patch as seen from a partipalat or viewer. When the surface
normal points directly at the viewer its effective size {dangle) is maximal. As the surface
normal rotates away from the viewer it appears smaller (€igl). Eventually when the normal
is pointing perpendicular to the viewing direction you dae patch “edge on”; so its projection is
just a line (with zero area).

Putting it all together: Not surprisingly, the solid angle of a small surface patchhwespect
to a specific viewing location, depends on both on the digtdram the viewing location to the
patch, and on the orientation of the patch with respect toitwging direction.

Copyright(© 2005 David Fleet and Aaron Hertzmann 79

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

q da

~AcosB dA cos©

Figure 7: Foreshortening in 2eft: For a patch with areal, seen from a poing, the patch’s
foreshortened area is approximatelyos 6. This is an approximation, since the distamogaries
over the patch. The angteis the angle between the patch normal and the directign ®ight:

For an infinitesimal patch with are&, the foreshortened area is exactlyf cos 6.

Let g be the point (such as a light source or a viewer) about whictvarg to compute solid angle.
Let p be the location of a small planar surface pafctvith areaA at distance: = ||g — p|| from

g. Additionally, suppose the surface normal points direatly (Figure 8). In this case, we can
imagine drawing a hemisphere abquwvith radiusr, and the projected areeof this patch will be
approximatelyA. Hence, the solid angle ~ A/r2. In other words, the solid angle is inversely
proportional to distance squared; a more distant objeatwbs less of’s “field of view.” This is

an approximation, however, since the distanwaries over the patch. Nevertheless, if we consider
the limit of an infinitesimal patch with are&4, then the solid angle is exactiipy = dA/r?.

When the surface normal does not point directlyj,atoreshortening plays a significant role. As
the surface normal rotates away from the directioq ef p, the surface, as viewed from poiat
becomes smaller; it projects onto a smaller area on a spkatered af. sphere. So, we say that
the area of the patch, as seen frgnis foreshortenedMore formally, letd be the angle between
the normali and directiong — p. Then, for our infinitesimal surface with aréd, the solid angle
subtended by the tilted patch is

(60)

The cosine term should look familiar; this is the same cogéme used in Lambertian shading
within the Phong model.

Figure 8: Solid angle of a patch.eft: A patch with normal pointing at Right: A patch with
arbitrary orientation.

Copyright(©) 2005 David Fleet and Aaron Hertzmann 80

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

12.2 Elements of Radiometry

The field of radiometry concerns the measurement of liglgciebmagnetic radiation), usually
restricted to the visible wavelengths, in the range 4004#00 Light is often measured in discrete
units called photons. It is difficult to talk about the numieérphotons that illuminate a point
on a surface at a particular time (as it is almost always zdrstead, we talk about the average
number of photons in small (infinitesimal) intervals of spac time, that is, we talk about photon
density, and thereby treat light as a continuous quantttyerahan a photon count. In effect, we
are assuming that there is enough light in the scene so thaiawereat light as a continuous
function of space-time. For example, we will talk about tigiat hitting a specific surface patch as
a continuous function over the patch, rather than disciesdigtrete photons of light.

12.2.1 Basic Radiometric Quantities

Formally, we describe light in terms eo&diant energy You can think of radiant energy as the

totality of the photons emitted from a body over its entirefate and over the entire period of

time it emits light. Radiant energy is denoted®y) and measured in Joules (J). You can think of
radiant energy as describing how much light has been enfitbed (or received by) a surface up

to a timet, starting from some initial time. 2

The main quantity of interest in radiometry power, that is, the rate at which light energy is
emitted or absorbed by an object. This time-varying quantisually calledflux, is measured in
Joules per second ($!). Here we denote flux b (¢):

dQ(t)

D(t) = T (61)

We can compute the total light that hits a surface up to tiae

Q) = / B(r) dr 62)

Flux is sufficiently important that we define a special uninoéasure for it, namely, watts (W).

One watt is one Joule per second; so a 50 watt light bulb dr@dbenergy per second. Most
of this radiant energy is emitted as visible light. The restonverted to thermal energy (heat).
Higher wattage means a brighter light bulb.

Not surprisingly, the light received or emitted by an objeaties over the surface of the object.
This is important since the appearance of an object is ofésed on how the light reflected from

20f course, radiant energy depends on waveleiggo it is common to express energy as a function of wavelength
the resulting density functior®)()\), is called spectral energy. This is important since diffiergavelengths are seen
as different colours. Nevertheless, our next major singalifon will be to ignore the dependence of radiant energy on
wavelength. In computer graphics, colours are controliethk relative amounts of power in three separate spectral
bands, namely, Red, Green, and Blue. What we describe inttajger can be applied to each colour channel.

Copyright(© 2005 David Fleet and Aaron Hertzmann 81

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

its surface depends on surface position. Formally, lrgheivedat the surface of an object, as a
function of image position is calledradiance The lightemittedfrom a surface, as a function of
surface position, is often callgddiant exitancgor radiosity).

Irradiance, the incident flux, as a function of surface pasip, is denoted by (5). Remember,
we cannot talk about the amount of light received at a singletpn a surface because the number
of photons received at a single point is generally zero.ebu$tirradiance is the spatial density of
flux, i.e., the amount of light per unit surface area. Thegraeof irradiance over the surface of an
object gives us the total incident flux (i.e., received by dtibject. Accordingly, irradiance is the
spatial derivative of flux. For smooth surfaces we write

dd

- (63)

H(p)

whered A refers to differential surface area. Irradiance is just@oper unit surface area (\W—2).

Example:
For a planar patch in the — y plane, we can write irradiance as a function:ofy)
position on the patch. Also, we havel = dxdy. In this case:

d*®
dxdy

H(z,y) = (64)

These terms are all functions of timesince lighting® may change over time However, we will
leave the dependence on timinplicit in the equations that follow for notational simgliy.

Example:
What is the irradiance, owing to a point light source, on an irfinitesimal patch
S with area dA? Let's say we have a point light source laémitting / watts pe
steradian into all directions:

d® = Idw (65)

In other words, the amount of light from this source is prdijpoial to solid angle,
and independent of direction. Our goal is to compute theliareceH on the patch,
which can be done by subtitution of formulas from this chapte

dd Idw _ IdAcos0 _ I cos@ (66)

H = — =
dA dA dAr? r2

wherep is the position ofS, r = |l — p||, and@ is the angle between the surface
normal and the vector — p. This formula illustrates the importance of solid angle:
the amount of light hitting a surface is proportional to itdigl angle with respect t

Copyright(© 2005 David Fleet and Aaron Hertzmann 82

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

the light sourceA distant patch (with large) receives less light than a nearby patch,
and a foreshortened patch receives less light than a frpatah. Furthermore, the
amount of light hitting the patch is proportional to the mdgéy / of the light source.

12.2.2 Radiance

Of course the light emitted or received by an object dependssual direction as well as surface
position. For example, objects are often illuminated mooenfabove (the sky) than below (the
ground). As a consequence, when the direction of light pyapan is important, we will express
flux as a function of visual direction. This leads to the caintuantity in radiometry, namely,
radiance Radiance is a measure of the rate at which light energy isenmitom a surface in
a particular direction. It is a function of position and ditien, and it is often denoted b (or
L(p, d)). Formally, it is defined as power per steradian per surfeea @V- sr-! - m~2), where the
surface area is defined with respect to a surface patglthait is perpendicular to the directian

Normally, one might think of radiance as a measure of the kghitted from a particular surface

location into a particular direction. The definition abogemore general however. It allows us to
talk about the light travelling in a particular directiorrélngh an arbitrary point in space. In this
case we are measuring surface area with respectittual surface, but we can talk about surface
area nonetheless.

When we talk about the light (radiance) emitted from a paldicsurface into a particular emittant
directiond, we have to be a little more careful because radiance is deiiitbdespect to a surface
perpendicular to the emittant direction, which is usuatly the same orientation as the actual real
surface in question. Accordingly, often radiance is defiag@ower per unfioreshortenedurface
area per solid angle to make explicit the fact that we areguaimirtual surface and not the real
surface to measure area. That is, we are measuring surlscasseen by someone looking at the
surface from somewhere along a ray in the emittant direction

z

— ,

de nA VA = cos 0 dA;
dw 7 g d,
e/
dAS e 7
dA,

Note:
Computing radiant exitance (radiosity)As mentioned above, radiant exitance is
the total amount of flux leaving a surface into the entire tspmére of emittant dj-

Copyright(© 2005 David Fleet and Aaron Hertzmann 83

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

rections, as a function of surface position. Intuitivelyjsi the integral of surface
radiance, but we have to be careful; radiance is defined wghect to unit area on
a surface perpendicular to the emittant direction rathen timit area on the real sur-
face of interest. Before we can integrate radiance we needeaifg all radianc
guantities in terms of unit surface area on the real surfdoedo this one needs to
multiply radiance for emittant directiod, by the ratio of the surface area normal
to d, (i.e., dA), to the real surface area, denotéd,. As discussed above, for an
infinitesimal patch the ratio of these areas is just the fuvgening factor, i.e.,

dA = cosOdA, = 7i-d, dA, , (67)
whered is the angle between the unit vect@?andafe.

Taking this foreshortening factor into account, the relatoetween radiant exitance

-

E(p) and radiancé.(p, d) is given by

PG = | e dde (68)

€Qe

The domain of integratior)., is the hemisphere of possible emittant directions,

Note:
Computing Irradiance: Above we showed that the irradiance on an infinitesimal
surface patcld at pointp owing to a point light source atwith radiant intensity/
is given by
I cosf
=2 (69)

r2

wherer = ||g — p|| is the distance between the light source and the surfacé,patc
andd is the angle between the surface normal and the directioheolight source
from the surface patch; — p.

In this case, the radiance @from the point light source direction = p—q/r,ie.,
L(p,d), is simply I /r2. The factorcos § is the foreshortening factor to convert from
area perpendicular to the directidrto area on the surface:
Accordingly, if we consider radiance atfrom the entire hemisphere of possib
incident directions, then the total irradiancepas given by

e

-

Hp) = [L~ dds (70)

(Note that incident directions here are outward facing ffm

Copyright(© 2005 David Fleet and Aaron Hertzmann 84

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

Note:
Radiance vs. Irradiance.Radiance and irradiance are very similar concepts — both
describe an amount of light transmitted in space — but it gdrtant to recognize the
distinctions between them. There are several ways of thin&bout the difference;
e Radiance is a function of direction; it is power per foresboed surface area
per steradian in a specific direction. Irradiance is incigewer per surfac
area (not foreshortened); it is not a directional quantity.

[¢)

e Radiance (W sr!-m~2) and irradiance (Wm~2) have different units.

e Radiance describes light emitted from a surface. Irradigieseribes light in
cident on a surface. Indeed, from the radiance emitted froesarface we can
compute the incident irradiance at a nearby surface.

12.3 Bidirectional Reflectance Distribution Function

We are now ready to explore how to model the reflectance ptiepesf different materials. Dif-
ferent objects will interact with light in different waysoBe surfaces are mirror-like, while others
scatter light in a wide variety of directions. Surfaces #gtter light often look matte, and appear
similar from different viewing directions. Some objectssalb a significant amount of light; the
colour of an object is largely a result of which wavelengthalisorbs and which wavelengths it
reflects.

One simple model of surface reflectance is refered to as theebiional reflectance distribution
function BRDF). The BRDF describes how light interacts with a surface forlatikely wide
range of common materials. In intuitive terms, it specifiémtfraction of the incoming light from
a given incident direction will be reflected toward a giventtant direction. When multiplied by
the incident power (i.e., the irradiance), one obtains #erdd emittant (i.e., reflected) power.

More precisely, the BRDF is a function of emittant and incidginectionsd, andd;. It is defined
to be the ratio of radiance to irradiance:

— L

de,d;) = — 71

plde, d;) = — (71)

For most common materials the only way to determine the BRDFtls mveasurements. That is,
for a wide range of incident and emittant directions, a nialtés illuminated from one direction
while the reflected light is measured from another directi®his is often a tedious procedure.
In computer graphics it is more common to design (i.e., maReparametric BRDF formulae,
and then vary the parameters of such models to achieve tivedieppearance. Most parametric
models are based on analytic models of certain idealizedmatd, as discussed below.

Copyright(© 2005 David Fleet and Aaron Hertzmann 85

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

12.4 Computing Surface Radiance

When rendering an image of an object or scene, one wants to kaawnuch light is incident at
each pixel of the image plane. (In effect, one wants to comthg image irradiance.) Fortunately
it can be shown that this quantity is linearly related to tben® radiance. In particular, for a point
on an opaque object in a given visual direction, one simpBdseo compute the radiance from
that point on the surface in the direction of the camera. Basatie BRDF model of reflectance,
the surface radiance depends on the incident illuminaticedjance) at the surface, and the BRDF
of course.

Point Light Sources

For example, consider a single point source with radiamnisity /. To compute the irradiance
at a small surface patch we can compute the total flux arrigirthe surface, and then divide by
the area of the surface to find flux per unit area. More pregisatliant intensity for the source is
given byl = d®/dw. We multiply by the solid angle subtended by the patetto obtain the flux
on the surface®, and then we divide by the surface ark&to obtaind®/dA, that is, irradiance
as in Egn (63). For a point light source this was shown abce Exin. (66)) to be given by

n-d;

(72)

whereri is the unit surface normall; is the unit vector in the direction of hte light source frore th
surface patch, andis the distance from the patch to the light source.

We now want to compute the radiance from the surface (ewgartbthe camera). Toward this end,
we multiply the irradiancé{ by the BRDF,o(d,, d;), in order to find radiance as a function of the
emittant direction:

(73)

This perspective generalizes naturally to multiple lightrees. That is, the radiance from a point
p on a surface in the direction of the camera is the sum of radmdue to individual light sources.
For J point light sources, at locatiodg with intensities/;, the radiance is given by

.o ﬁ.j
=>" plde, d;) - (74)

Jj=1

wherer; = ||I; — p|| is the distance to thg” source, and; = (I, — p)/r; is the incident direction
of the j*" source.

Copyright(©) 2005 David Fleet and Aaron Hertzmann 86

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

Extended Light Sources

Many light sources are not infinitesimal point sources. Raihehe general case we need to be
able to work with extended light sources for which the inaidigght is a continuous function of
incident direction. One way to think of this is to let the nuenlof discrete light sources go to
infinity so that the sum in Eqn (74) becomes an integral.

Here we take a slightly different, but equivalent approaék.discussed above, radiance can be
used to express the light energy transport through any pospace, in any direction of interest.
Thus, given a poing on a surface with unit normal, we can express the radiance throggiiong
the hemisphere of possible incident directiond.§s d_;) for cZ; € ; where); denotes the domain
of plausible incident directions at

Note:

As above, we can erect a spherical coordinate systemm @bward this end, let;
denote an angle measured from the surface normal, ang le¢ an angle in th
surface tangent plane about the normal relative to some Siamte — y coordinate
system in the plane. Then all directions

[¢)

d, = (sin 0; cos ¢;, sin 6; sin ¢;, cos 6;)" (75)

contained i, satisfyd; € [0, /2] and¢; € [—m, 7).

One problem with radiance is the fact that it expresses ¢t fiux in terms of power per unit
area on a surface perpendicular to the direction of inteiésis, for each incident direction we are
using a different plane orientation. In our case we want fress the power per unit area on our
surfaceS, and therefore we need to rescale the radiance in dire@;ibylthe ratio of foreshortened
surface area to surface area. One can show that this is alisbetpby multiplyingL(p, J;-) by
cosb; = d; - ii, for normalfi. The result is now the incident power per unit surface ared (n
foreshortened) per solid angle. We multiply this by soliglanriw to obtain irradiance:

H = L(p, —d_;) cos 0; dw; (76)
Therefore, the resulting surface radiance in the direaidhe camera due to this irradiance is just
p(de, i) L(p, —d;) cosb; dw;

If we then accumulate the total radiance from the incidéuairilnation over the entire hemisphere
of possible incident directions we obtain

L(d) = /d p(de, di) L(p, —d;) cos 6; dw; (77)

1 €82

Copyright(© 2005 David Fleet and Aaron Hertzmann 87

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

where, as above, the infinitesimal solid anglé.s = sin 0; df; d¢;.

Light sources vary greatly from scene to scene. In effecermyou take a photograph you are
measuring irradiance at the image plane of the camera fanitetl field of view (angular extent).
This shows how complex illumination sources can be.

Note:

The ideal point light source can also be cast in the framewbik continuous, ex
tended source. To do this we assume that the distributionaadient light can b
modeled by a scaled Dirac delta function. A Dirac delta fiorcé(x) is defined by

D

d(z)=0 for . #0 , and /5(3:) f(x)dx = f(0) (78)

With the light source defined as a delta function, Eqn (77)iced to Egn (73).

12.5 Idealized Lighting and Reflectance Models

We now consider several important special instances of BRDéefso In particular, we are in-
terested in combinations of lighting and BRDF models thatitate efficient shading algorithms.
We discuss how diffuse and specular surfaces can be repedsenBRDFs.

12.5.1 Diffuse Reflection

A diffuse (or matte) surface is one for which the pattern aidihg over the surface appears the
same from different viewpoints. The ideal diffusely reflegtsurface is known as a perfect Lam-
bertian surface. Its radiance is independent of the enitiaection, its BRDF is a constant, and
it reflects all of the incident light (i.e., it absorbs zeronaw). The only factor that determines the
appearance (radiance) of a Lambertian surface is therdfergradiance (the incident light). In
this case, with the BRDF constap(Je, dZ) = po, the (constant) radiande. has the form:

La(p.d.) = po / L(p, —d}) cos b, des (79)
d

i€8;

Note:

A perfect Lambertian surface reflects all incident lightsatbing none. Thereforg,
the total irradiance over the hemisphere of incident dioestmust equal the radiant
exitance. Setting these quantities to be equal, one can 8taw, = 1/7. The
BRDF for any diffuse surface must therefore have a value betWedl1 /7.

Despite the simplicity of the BRDF, it is not that simple to cartgothe radiance because we still
have an integral over the hemisphere of incident directid®s let's simplify the model further.

Copyright(© 2005 David Fleet and Aaron Hertzmann 88

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

Let's assume a single point light source with intengityt locationl. This gives us

. ii-d,

Ld(pa de) = Po I (80)

r2

wherer = ||l — p]| is the distance to the light source frgmandd; = (I — p)/r is the direction of
the source fronp. Of course, the surface normaklso changes witp.

Eqn (80) is much easier to compute, but we can actually makedmputation even easier. Let's
assume that the point source is sufficiently far away tretdd; do not change much with points
p on the object surface. That is, let’s treat them as constdr@n we can simplify Eqn (80) to

wherer, is often called the diffuse reflection coefficient, afid the direction of the source. Then
the only quantity that depends on surface posifiesthe surface normai.

Note:
The values - 77 should actually benax(0, 5'- 77). Why? Consider the relationship |of
the light source and surface when this dot product is negativ

12.5.2 Ambient lllumination

The diffuse shading model in Eqn (80) is easy to compute, heh@ppears artificial. The biggest
issue is the point light source assumption, the most obvammsequence of which is that any
surface normal pointing away from the light source (i.ex vihich s 77 < 0) will have a radiance
of zero. A better approximation to the light source is a umf@mbientterm plus a point light
source. This is a still a remarkably crude model, but it's mietter than the point source by itself.

With a uniform illuminant and a constant BRDF, it is easy to d&# the integral in Eqn (79)
becomes a constant. That is, the radiance does not depehe ondntation of the surface because
the illumination is invariant to surface orientation. Asesult we can write the radiance under a
uniform illuminant as

L,(p) =141, (82)

wherer, is often called the ambient reflection coefficient, dpdenotes the integral of the uniform
illuminant.

Note:
If the illuminant is the sum of a point source and a uniformrseuthen the resulting
radiance is the sum of the radiances to the individual seutbat is, the sum of Eqns
(82) and (81).

Copyright(© 2005 David Fleet and Aaron Hertzmann 89

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

12.5.3 Specular Reflection

For specular (mirror) surfaces, the incident light fromtegident direction; is reflected toward
Qunique emittant directiaf.. The emittant direction Iiesjn the same plane as the in¢idigex:tion
d; and the surface normal and the angle betweehandd, is equal to that betweenandd;. One

n

d; d,

can show that the emittant direction is given (ﬁ,y: 2(m - d?)ﬁ - d: For all power fromd:- be
reflected into a single emittant direction the BRDF for a perfeicror must be proportional to a
delta functionp(d,, d;) < 6(d; — (2(7i -)7l — d.)).

In particular, if we choose the constant of proportionaditythat the radiant emittance is equal to
the total incident power, then the BRDF becomes:

p(dodl) = —— 8(d; — (7 d)7i —) (83)
7 - d;
In this case, Eqn (77) reduces to
Ls(p7d;> :L(ﬁa_(2<ﬁd;>ﬁ_d;)) (84)

This equation plays a major role in ray tracing.

Off-Axis Specularity: Many materials exhibit a significant specular componenthirtre-
flectance. But few are perfect mirrors. First, most speculdiases do not reflect all light, and
that is easily handled by introducing a scalar constant im(B4) to attenuate surface radiance
Second, most specular surfaces exhibit some formwiffedxis specular reflectionThat is, many
polished and shiny surfaces (like plastics and metals) kghitin the perfect mirror direction and
in some nearby directions as well. These off-axis spedidaiook a little blurred. Good examples
arehighlightson plastics and metals.

The problem with off-axis specularities is that the BRDF isaroger a simple delta function. The
radiance into a particular emittant direction will now béeated from the incident power over a
range of incident directions about the perfect specul@&ction. This means that, unlike the simple
radiance function in Eqn (84) for perfect measures, we needttirn to the integral in Eqn (77).
Therefore it is not easy to compute radiance in this case.

Like the diffuse case above, one way to simplify the modehwit-axis specularities is to assume
a point light source. With a point light source we can do awity the integral. In that case the

Copyright(©) 2005 David Fleet and Aaron Hertzmann 90

CSC418/CSCD18/CSsC2504 Radiometry and Reflection

light from a distant point source in the direction ofs reflected into a range of directions about
the perfect mirror directions: = 2(7i - §)7i — 5. One common model for this is the following:

—

Ly(d,) = r,I max(0,m - d,)°, (85)

wherer, is called the specular reflection coefficient (often equaltor,), I is the incident power
from the point source, and > 0 is a constant that determines the width of the specular ilgigs!.
As « increases, the effective width of the specular reflectiarekeses. In the limit as increases,
this becomes a mirror.

12.5.4 Phong Reflectance Model

The above components, taken together, give us the well-kritivong reflectance model that was
introduced earlier:

- —

L(p,d.) = 141y max(0,5-7) + ro I, + rslsmax(0,m - de)?, (86)
where

e [,, I;,andl, are parameters that correspond to the power of the lightseedior the ambient,
diffuse, and specular terms;

r., 74 andr, are scalar constants, called reflection coefficients, thtgrchine the relative
magnitudes of the three reflection terms;

« determines the spread of the specurlar highlights;

7 is the surface normal at

s'is the direction of the distant point source;

m is the perfect mirror direction, givemands’; and

andd, is the emittant direction of interest (usually the direotad the camera).

Copyright(© 2005 David Fleet and Aaron Hertzmann 91

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

13 Distribution Ray Tracing

In Distribution Ray Tracing (hereafter abbreviated as “DRRBur goal is to render a scene as ac-
curately as possible. Whereas Basic Ray Tracing computed @netg approximation to radiance
at a point, in DRT we will attempt to compute the integral asumately as possible. Additionally,
the intensity at each pixel will be properly modeled as argral as well. Since these integrals
cannot be computed exactly, we must resort to numericajiat®n techniques to get approximate
solutions.

Aside:

When originally introduced, DRT was known as “Distributed Ragicing.” We will
avoid this name to avoid confusion with distributed compgtiespecially because
some ray-tracers are implemented as parallel algorithms.

13.1 Problem statement

Recall that, shading at a surface point is given by:
L) = [pld di(0.0)) L=di0,0) (- @) e 87)

This equation says that the radiance emitted in directjais given by integrating over the hemi-
sphere) the BRDFp times the incoming radiande(—d; (¢, #)). Directions on the hemisphere are
parameterized as

d, = (sin 0 sin ¢, sin @ cos ¢, cos) (88)

The differential solid angldw is given by:
dw = sin 0dOd¢ (89)

and so:

-/ / o(dd(6,0)) L(~d(6,0)) (7 - ;) sin6dods (90)
$€[0,27] ae()n/z

This is an integral over all incoming light directions, aneé wannot compute these integrals in
closed-form. Hence, we need to develop numerical techeitueompute approximations.

Intensity of a pixel. Up to now, we've been engaged in a fiction, namely, that thensity

of a pixel is the light passing through a single point on angealane. However, real sensors
— including cameras and the human eye — cannot gather ligah abfinitesimal point, due
both to the nature of light and the physical properties ofgéesors. The actual amount of light
passing through any infinitesimal region (a point) is inésimal (approaching zero) and cannot
be measured. Instead light must be measured within a re@pacifically, the image plane (or

Copyright(©) 2005 David Fleet and Aaron Hertzmann 92

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

retina) is divided up into an array of tiny sensors, each attvimeasures the total light incident
on the area of the sensor.

As derived previously, the image plane can be parameteaged«, 5) = po + ai + (9. In
camera coordinateg; = (0,0, f), and the axes correspond to thandy axes:u“ = (1,0,0) and

v° = (0,1,0). Then, we placed pixel coordinates on a gyifl; = (L +iAi, T+ jAj, f) = po +a,
whereAi = (R — L)/n.andAj = (B —T)/n,, andL, T, B, R are the boundaries of the image
plane.

We will now view each pixel as an area on the screen, ratherdhsingle point. In other words,
pixel (z, 7) is all valuesp(a, 3) for amim < a < Qmazs Bmin < B < Bmaz- The bounds of each
pixel are:aip, = L+ iAi, Qo = L+ (i + 1) AL, Bpin = T + jAF, andBee = T + (+ 1) Aj.

(In general, we will set things up so that this rectangle igwase in world-space.) For each point
on the image plane, we can write the ray passing through ke s

_]5(0[, B) —€
||p(cv, B) — el

To compute the color of a pixel, we should compute the totditlenergy passing through this
rectangle, i.e., the flux at that pixel:

v, [/ H(a, B)dadp (92)
Qmin Sa<amaz Bmzn §ﬁ<ﬁmam

whereH («, 3) is the incoming light (irradiance) on the image at positior$. For color images,
this integration is computed for each color channel. Agammgcannot compute this integral exactly.

d(a,) (91)

Aside:
An even more accurate model of a pixel intensity is to weiglgsraccording to ho
close they are to the center of the pixel, using a Gaussiaghtieg function.

<

13.2 Numerical integration

We begin by considering the general problem of computingneegral in 1D. Suppose we wish to
integrate a functiorf (x) from 0 to D:

D
S:/O f(z)dx (93)

Visually, this corresponds to computing the area underaectRecall the definition of the integral.
We can break the real line into a set of intervals centeredi&nnly-spaced points,, ..., z . We
can then define one rectangle on each interval, each viidiki and heightf(z;). The total area

Copyright(©) 2005 David Fleet and Aaron Hertzmann 93

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

of these rectangles will be approximately the same as treelwarder the curve. The area of each
rectangle isf(z;) D/N, and thus the total area of all rectangles together is:

SN = % Z f(xi) (94)

Hence, we can us8y as an approximation t6. Moreover, we will get more accuracy as we
increase the number of points:
lim Sy =S (95)

N—oo

There are two problems with using uniformly-spaced samiplesumerical integration:

e Some parts of the function may be much more “important” théreis. For example, we
don’t want to have to evaluatg(z) in areas where it is almost zero. Hence, you need to
generate many, many values, which can be extremely slow.

e Uniformly-spaced samples can leadabasing artifacts These are especially noticable
when the scene or textures contain repeated (periodi®rpatt

In ray-tracing, each evaluation @fx) requires performing a ray-casting operation and a reaairsiv
call to the shading procedure, and is thus very, very expengiience, we would like to design
integration procedures that use as few evaluationg.of as possible.

To address these problems, randomized techniques knowtoake Carlo integration can be
used.

13.3 Simple Monte Carlo integration

Simple Monte Carlo addresses the problem of aliasing, anksnas follows. We randomly sample
N valuesz; in the interval[0, D], and then evaluate the same sum just as before:

D
Sy =% Z f(x) (96)
It turns out that, if we have enough samples, we will get jgssaecurate a result as before; more-

over, aliasing problems will be reduced.

Aside:
Formally, it can be shown that the expected valugpfis S. Moreover, the variange
of Sy is proportional taV, i.e., more samples leads to better estimates of the integra

In the C programming language, the random sampling can beutaa as and() * D.

Aside:
Monte Carlo is a city near France and Italy famous for a bignzagtience, the name
of the Monte Carlo algorithm, since you randomly sample sooietp and gambl
that they are representative of the function.

4%

Copyright(© 2005 David Fleet and Aaron Hertzmann 94

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

13.4 Integration at a pixel

To compute the intensity of an individual pixel, we need taleate Equation 92). This is a 2D
integral, so we need to determifi&2D points(«;, 3;), and compute:

K

(I)i,j ~ (amax - amin]){(—ﬁmax - Bmm) Z H(Olz,ﬁz) (97)

=1

In other words, we pickV points withnin the pixel, cast a ray through each point, dethtaverage
the intensities of the rays (scaled by the pixel's &®@g., — @min)(Bmaz — Bmin). These samples
can be chosen randomly, or uniformly-spaced.

Example:
The simplest way to compute this is by uniformly-spaced dasfpv,,, 3,):

an = (m—1DAa, Aa = (e — Wmin)/M (98)
Bn - (Tl - 1)A57 Aﬁ - (ﬁmax - ﬁmm)/N (99)
and then sum:
M N
~ DadB YD Hlom, B) (100)
m=1 n=1

However, Monte Carlo sampling — in which the samples are ramgcpaced —
will usually give better results.

13.5 Shading integration

Our goal in shading a point is to compute the integral:

= [i 6) L-di6.0) i+) singdsds (101)
¢€[0,2n] JO€[0,7/2]

We can choose uniformly-spaced valueg@ndd values as follows:

6 = (m—1)A0, AO=(r/2)/M (102)

This divides up the unit hemisphere imté/V solid angles, each with area approximately equal to
sin 0AOA¢. Applying 2D numerical integration gives:

ZZpJ di(6.0)) L(=di(6,0)) (7 - d;) sin 6 A9 Ag (104)

m=1n=1

Copyright(© 2005 David Fleet and Aaron Hertzmann 95

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

Once you have all the elements in place (e.g., the ray-trieeBRDF model, etc.), evaluating this
equation is actually quite simple, and doesn't requirehaditteatment of special cases required for
basic ray-tracing (such as specular, diffuse, mirror) ektowever, it is potentially much slower to
compute.

13.6 Stratified Sampling

A problem with Simple Monte Carlo is that, if you use a small tn@mof samples, these samples
will be spaced very irregularly. For example, you might beyvenlucky and get samples that
don’t place any samples in some parts of the space. This caddrvessed by a technique called
stratified sampling: divide the domain infg-uniformly sized regions, and randomly sample
pointsz; within each region; then su} 3", f(z;) as before.

13.7 Non-uniformly spaced points

Quite often, most of the radiance will come from a small pathe integral. For example, if the
scene is lit by a bright point light source, then most of thergy comes from the direction to this
source. If the surface is very shiny and not very diffusentimost of the energy comes from the
reflected direction. In general, it is desirable to sampleengi@nsely in regions where the function
changes faster and where the function values are large. diferg equation for this is:

Sy = Z f(w;)d; (105)

whered; is the size of the region around point Alternatively, we can use stratified sampling,
and randomly samplég values within each region. How we choose to define the regiess
and spaces depends on the specific integration problem.gBoican be very difficult, and, as a
consequence, deterministic non-uniform spacing is ndymakd in graphics; instead, importance
sampling (below) is used instead.

13.8 Importance sampling

The method ofimportance samplingis a more sophisticated form of Monte Carlo that allows
non-uniform sample spacing. Instead of sampling the paiptsmiformly, we sample them from
another probability distribution function (PDp}jz). We need to design this PDF so that it gives
us more samples in regions othat are more “important,” e.g., values ffr) are larger. We can
then approximate the integrélas:

. i f(%)
Sy = Z o) (106)

Copyright(©) 2005 David Fleet and Aaron Hertzmann 96

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

If we use a uniform distributionp(z) = 1/D for x € [0, D], then it is easy to see that this
procedure reduces to Simple Monte Carlo. However, we canuslesomething more sophisti-
cated, such as a Gaussian distribution centered arounaihievyge expect to provide the greatest
contribution to the intensity.

Copyright(© 2005 David Fleet and Aaron Hertzmann 97

CSC418/CSCD18/CSsC2504 Distribution Ray Tracing

13.9 Distribution Ray Tracer

for each pixel (i,))
< chooseVN pointsz; within the pixel's area >
for each samplé
< compute rayf,(\) = By + Ad;, whered, = B, — € >
I, = rayTrace@;, d;, 1)
endfor
setpixel(i, j,AiAj >, I;;/N)
endfor

The rayTrace and findFirstHit procedures are the same as f&ic Bay Tracing. However, the
new shading procedure uses numerical integration:

distRtShadgOBJ, b, ii, d., depth)
< chooseN directions(¢y, 0;) on the hemisphere>
for each directiork
I, = rayTracep, d;, depth+1)
endfor
returnAdAe¢ >, p(&e, ci;(gbk, 01)) I}, sin O,

Copyright(© 2005 David Fleet and Aaron Hertzmann 98

CSC418/CSCD18/CSsC2504 Interpolation

14 Interpolation

14.1 Interpolation Basics

Goal: We would like to be able to define curves in a way that meetsdl@aing criteria:
1. Interaction should be natural and intuitive.
2. Smoothness should be controllable.
3. Analytic derivatives should exist and be easy to compute.
4. Representation should be compact.

Interpolation is when a curve passes through a set of “control points.”

Figure 9: *
Interpolation

Approximation is when a curve approximates but doesn’t necessarily aoittacontrol points.

Figure 10: *
Approximation

Extrapolation is extending a curve beyond the domain of its control points.

Continuity - A curve is isC™ when it is continuous in up to itsN-order derivatives. For example,
acurve is inC! if it is continuous and its first derivative is also continsou

Consider a cubic interpolant — a 2D cure¢t) = [z(t) y(t) | where

z(t) = ag+ ait + ast® + ast?, (107)
y(t) = bo + blt + bgtz + bgtg, (108)

Copyright(©) 2005 David Fleet and Aaron Hertzmann 99

CSC418/CSCD18/CSC2504

Interpolation

Figure 11: *
Extrapolation

SO
3 o
_ PO 2 43 ar | _ro
z(t) = ;alt [t e] =t
as

(109)

Here,? is the basis and is the coefficient vector. Hence(t) = ET[a 5] (Note:T[a 5} is

a4 x 2 matrix).

There are eight unknowns, fouy values and foub, values. The constraints are the values(of

at known values of.

r1 1 0 0 0

vy | |1 1/3 (1/3)2 (1/3)° [d 7
T3 Y3 1 2/3 (2/3)% (2/3)°

Ty Ya 1 1 1 1

points.

Example:
Fort € (0,1), suppose we know; = ¢(t;) fort; = 0,3,2,1asj = 1,2,3,4. That
is,

a=[=n wm] = [20) »0)],

Co = [To Yo } = [x(l/S y(1/3) }7

C3 = [T3 Ys } = [55(2/3 y(2/3) L

54:[534 ?/4} = [ff(l) y(l)}

or more compactly| & gj]:C[a 5].Then,[a 5} =C7'[Z y]. From

(110)
(111)
(112)
(113)

(114)

this we can findz andb, to calculate the cubic curve that passes through the given

Copyright(© 2005 David Fleet and Aaron Hertzmann

100

CSC418/CSCD18/CSsC2504 Interpolation

We can also place derivative constraints on interpolantesurLet

f(t):di;tt) = %[1 t 2 t3][6 5] (115)
[

01tt2}[65}, (116)

that is, a different basis with the same coefficients.

Example:
Suppose we are given three points= 0, %, 1, and the derivative at a poinfg(%).
So we can write this as
1 % 1 0 0 0
zo oy | |1 1/2 (1/22 (172 |[. g
s oys | |11 1 1 [“ b}’ (117)
Ty Y 0 1 2(1/2) 3(1/2)*
and
C1
Co B -
2| = (J[a b}, (118)
T
which we can use to find andb:
C1
2] A1 | G2
ib| - c - (119)
T

Unfortunately, polynomial interpolation yields uninivé results when interpolating large num-
bers of control points; you can easily get curves that passitiih the control points, but oscillate
in very unexpected ways. Hence, direct polynomial inteapoh is rarely used except in combi-
nation with other techniques.

14.2 Catmull-Rom Splines

Catmull-Rom Splinesinterpolate degree-3 curves with' continuity and are made up of cubic
curves.

A user specifies only the poinig,, ...px] for interpolation, and the tangent at each point is set
to be parallel to the vector between adjacent points. Soathgent afp; is «(p;+1 — p;—1) (for

Copyright(© 2005 David Fleet and Aaron Hertzmann 101

CSC418/CSCD18/CSsC2504 Interpolation

endpoints, the tangent is instead parallel to the vecton fite endpoint to its only neighbor). The
value ofx is set by the user, determining the “tension” of the curve.

p;
P

28

Between two pointsp; andp,,, we draw a cubic curve using, p;;;, and two auxiliary points
on the tangents;(p; 1 — pj—1) andx(pj 2 — p;).

We want to find the coefficients; whenz(¢t) = [1 ¢ * 3 |[ap a1 a» a3]T, where the
curve is defined a&(t) = [¢(t) y(t) | (similarly for y(¢) andb;). For the curve betweepy and
Dj+1, assume we know two end pointg()) andc(1) and their tangents; (0) andc'(1). That s,

z(0) = wj, (120)
z(l) = 4, (121)
2'(0) k(i1 — xj-1), (122)
(1) = k(zjpe — xj). (123)
To solve fora, set up the linear system,

x(0) 1 000 ap

x(1) B 1111 a

2'(0) 10100 as (124)

/(1) 012 3 as

ThenZ = Mda, sod = M~'#. Substituting in x(t) yields

1 0 0 0 T
0O o0 1 0 x;
x(t) = [1 ¢t ¢ ah 125
() [} -3 3 -2 -1 /i(ili'jurl — l‘j,1) ()
| —2 1 1 li(.Tj+2 — .Z‘j)
[0 1 0 0 Tj—1
= [1 ¢t 8]0 0 ko0 i (126)
2k k=3 3—2k —K Tjq1
| -k 2—K K—2 K Tjy2

Copyright(© 2005 David Fleet and Aaron Hertzmann 102

CSC418/CSCD18/CSsC2504 Interpolation

For the first tangent in the curve, we cannot use the aboveularrstead, we use:
i = k(P2 —P1) (127)
and, for the last tangent:

™~ = K(Pn —Pn-1) (128)

Copyright(©) 2005 David Fleet and Aaron Hertzmann 103

CSC418/CSCD18/CSC2504 Parametric Curves And Surfaces

15 Parametric Curves And Surfaces

15.1 Parametric Curves
Designing Curves
e We don’t want only polygons.

e Curves are used for design. Users require a simple set ofat®mdrallow them to edit and
design curves easily.

e Curves should have infinite resolution, so we can zoom in dldest a smooth curve.
e \We want to have a compact representation.

Parametric functions are of the fornit) = f(¢) andy(t) = ¢(¢) in two dimensions. This can be
extended for arbitrary dimensions. They can be used to ntaoteés that areot functions of any
axis in the plane.

Curves can be defined as polynomials, for examgle = 5t + 4¢t° + 3t® + However,
coefficients are not intuitive editing parameters, anddarhmgves are difficult to control. Hence,
we will consider more intuitive parameterizations.

15.2 Bezier curves

We can define a set of curves calleéier curves by a procedure called the de Casteljau algarithm
Given a sequence of control pointg, de Casteljau evaluation provides a construction of smooth
parametric curves. Evaluation proceeds by repeatedlyidgfirew, smaller point sequences until
we have a single point at the value fdior which we are evaluating the curve.

Y P,

Figure 12: de Casteljau evaluation for 0.25.

pot) = (L=t)po+th (129)

Copyright(© 2005 David Fleet and Aaron Hertzmann 104

CSC418/CSCD18/CSC2504 Parametric Curves And Surfaces

pi(t) = (1—1)p1+1tps (130)
() = (1—t)p2+tps (131)
po(t) = (1 —1)pe(t) + tpy (1) (132)
= (1 —1)%po +2t(1 — t)py + t*po (133)
pit) = (1—t)py(t) + tpy(t) (134)
= (1 —1)°py +2t(1 — t)po + t*Ps3 (135)
po(t) = (L—6)pg(t) +tpi(t) (136)
= (1 —1)po +3(1 —t)%tpy +3(1 — t)t*py + t°p3 (137)

The resulting curves; is the cubic Bzier defined by the four control points. The curggsandp?
are quadratic Bzier curves, each defined by three control points. For&ti€ curves, we keefp
in the rang€o0...1].

15.3 Control Point Coefficients

Given a sequence of poings, p1, ..., pn, We can directly evaluate the coefficient of each point. For
a class of curves known a€Bier curves, the coefficients are defined by the Bernsteympaoiials:

—n - n n % z— n
po<t):2(})(t'p ZB (138)
=0
where
BMt) = (7;)(1 — gynig (139)
are called th&ernstein basis functions.

For example, cubic &zier curves have the following coefficients:

Bi(t) = (1—t)° (140)
Bi(t) = 3(1—1t)* (141)
Bi(t) = 3(1—t)t? (142)
Bit) = (143)

Figure 13 is an illustration of the cubic Bernstein basis fioms.

Similarly, we define basis functions for a linear curve, whis equivalent to the interpolation
p(t) = po(1 — t) + p1t. These are shown in Figure 3.

Copyright(© 2005 David Fleet and Aaron Hertzmann 105

CSC418/CSCD18/CSC2504 Parametric Curves And Surfaces

Figure 13: Degree three basis functions f@zier curvesB;(t) (dark blue),B; (t) (green),Bs(t)
(red), andB3(t) (light blue).

Figure 14: Degree one basis functions f@zBer curves B} (t) (green) and3; (¢) (blue).

15.4 Bezier Curve Properties

e Convexity of the basis functions.For all values ot < [0...1], the basis functions sum to 1:

zn: BI(t) =1 (144)
1=0

In the cubic case, this can be shown as follows:
(1=t +t)P =0 -t +31-t)t+31-t)* +t° =1 (145)

In the general case, we have:

(1—t)+t)" = Y (?) (1—t)""t" =1 (146)

(2

Similarly, it is easy to show that the basis functions areagswon-negativeB! (t) > 0.

Copyright(© 2005 David Fleet and Aaron Hertzmann 106

CSC418/CSCD18/CSC2504 Parametric Curves And Surfaces

o Affine Invariance
What happens if we apply an affine transformation toeaiBr curve?

Lete(t) =37, p; B} (t), and letF(p) = Ap+ d be an affine transformation. Then we have

the following:
FEt) = Act)+d (147)
=AY mB®)+d (148)
= Y (AR BI(t)+d (149)
= > (ap+d) Br®) (150)
= Y B(t)g (151)

g = Ap; + d denotes the transformed points. This illustrates that réesformed curve
we get is the same as what we get by transforming the contmotpqThe third statement
follows from the fact thad " B} (t) = 1.)

e Convex Hull Property
Since BN (t) > 0, p(t) is a convex combination of the control points. Thugz®r curves
alwayslie within the convex hull of the control points.

e Linear Precision
When the control points lie on a straight line, then the cqoesling Ezier curve will also
be a straight line. This follows from the convex hull progert

e Variation Diminishing

No straight line can have more intersections with tiéziBr curve than it has with the control
polygon. (The control polygon is defined as the line segnmgms;.)

e Derivative Evaluation
Lettingc(t) = Z] o ;B (), we want to find the following:

Loy L det) (dx(t) dy(t)
clt) = dat (dt dt (152)
Letting d; = j;41 — p;, it can be shown that:
d d N N—
- = N— 1
(1) = el = EO: E:o: iB! (153)

Copyright(© 2005 David Fleet and Aaron Hertzmann 107

CSC418/CSCD18/CSC2504 Parametric Curves And Surfaces

Figure 15: The line (green) will always intersect the cuesloften than or as many times as the
control polygon.

Thus, () is a convex sum of the poings and is a point itself.7(¢) is a convex sum of
vectors and is a vector.

Example: What isT(0) whenN = 3, given (po, p1, D2, P3)?

SinceB}(0) = 0 for all j # 0 and B§(0) = 1,

7(0) = N " d;BNN(t) = 3d; = 3 (1 — po) (154)

Therefore, the tangent vector at the endpoint is paralligléwector from the endpoint to the
adjacent point.

e Global vs. Local Control

Bézier curves that approximate a long sequence of pointaipeoldigh-degree polynomials.
They have global basis functions; that is, modifying anynpohanges the entire curve. This
results in curves that can be hard to control.

15.5 Rendering Parametric Curves

Given a parameter range= [0, 1], samplet by some partitiom\¢, and draw a line connecting each
pair of adjacent samples.

e This is an expensive algorithm.
e This does not adapt to regions of a curve that do not requinesary samples.

e It's difficult to determine a sufficient number of samples émder the curve such that it
appears smooth.

There are faster algorithms based on adaptive refinemergudoativision.

Copyright(© 2005 David Fleet and Aaron Hertzmann 108

CSC418/CSCD18/CSC2504 Parametric Curves And Surfaces

15.6 Bezier Surfaces

Cubic Bezier patches are the most common parametric surfaces aisetbéieling. They are of
the following form:

3 3
=> Y B a)B}B)pix = Z B (B)pr(a) (155)
k=0 j=0

where eachp,(«) is a Bezier curve:

Z B ()pj (156)

Rather than considering only four points as in a cub&ziBr curve, consider 16 control points
arranged as a 4 x 4 grid:

’ -. .

7z .
— ——
- —

Figure 16: Evaluation of any point can be done by evaluatinges along one direction (blue),
and evaluating a curve among points on these curves witegmonding parameter values.

For any givenn, generate four points on curves and then approximate themaniBézier curve
alongg.

3

=Y B)pj (157)

7=0

To connect multiple patches, we align adjacent control {goito ensureé”! continuity, we also
have to enforce colinearity of the neighboring points.
The surface can also be written in terms of 2D basis functi®hsa, 5) = B} («) B}(3):

3 3
s(a, 8) = > > Bl (, B)pjn (158)

Copyright(© 2005 David Fleet and Aaron Hertzmann 109

CSC418/CSCD18/CSC2504 Animation

16 Animation

16.1 Overview

Motion can bring the simplest of characters to life. Evengarpolygonal shapes can convey a
number of human qualities when animated: identity, charagender, mood, intention, emotion,
and so on.

Very simple characters (image by Ken Perlin)

A movie is a sequence of frames of still images. For video fittuae rate is typically 24 frames
per second. For film, this is 30 frames per second.

TR O v - .
CEALLIE QANDNRIL” swnsd by DELAND STANPORD G mianing ii & 140 giilt dver tha Palo Allo tresh, 10uh Juae, 1675,

Copyright(© 2005 David Fleet and Aaron Hertzmann 110

CSC418/CSCD18/CSC2504 Animation

In general, animation may be achieved by specifying a modtl w parameters that identify
degrees of freedom that an animator may be interested inagich

e polygon vertices,

spline control,

joint angles,

muscle contraction,

camera parameters, or

e color.

With n parameters, this results in a vecipin n-dimensional state space. Parameters may be
varied to generate animation. A model’s motion is a trajgctbrough its state space or a set of
motion curves for each parameter over time, ig&), wheret is the time of the current frame.
Every animation technique reduces to specifying the staeestrajectory.

The basic animation algorithm is thefor t=t; to t..q: render(g(t)).

Modeling and animation are loosely coupled. Modeling dessrcontrol values and their actions.
Animation describes how to vary the control values. Theessanumber of animation techniques,
including the following:

e User driven animation

— Keyframing
— Motion capture

e Procedural animation

— Physical simulation
— Particle systems
— Crowd behaviors

e Data-driven animation

Copyright(© 2005 David Fleet and Aaron Hertzmann 111

CSC418/CSCD18/CSC2504 Animation

16.2 Keyframing

Keyframing is an animation technique where motion curves are intetpolthrough states at
times,(qi, ..., ¢r), called keyframes, specified by a user.

Keyframe 3

Position-1

Catmull-Rom splines are well suited for keyframe animatioceose they pass through their con-
trol points.

e Pros:

— Very expressive
— Animator has complete control over all motion parameters

e Cons:

Copyright(© 2005 David Fleet and Aaron Hertzmann 112

CSC418/CSCD18/CSC2504 Animation

— Very labor intensive
— Difficult to create convincing physical realism

e Uses:
— Potentially everything except complex physical phenonmsreh as smoke, water, or
fire
16.3 Kinematics

Kinematics describe the properties of shape and motion independemiysiqal forces that cause
motion. Kinematic techniques are used often in keyframinit}) an animator either setting joint
parameters explicitly witHorward kinematics or specifying a few key joint orientations and
having the rest computed automatically witkrerse kinematics

16.3.1 Forward Kinematics

With forward kinematics, a pointis positioned by = f(©) where© is a state vecta,, 65, ...0,,)
specifying the position, orientation, and rotation of alhs.

S|

For the above exampl@,= (1; cos(61) + I cos(0; + 65), 11 sin(6y) + Iy sin(6; + 05)).

16.3.2 Inverse Kinematics

With inverse kinematics, a user specifies the position okt effectorp, and the algorithm has
to evaluate the requireé give p. Thatis,© = f~!(p).

Usually, numerical methods are used to solve this problesnit B often nonlinear and either
underdetermined or overdetermined. A system is underdated when there is not a unique
solution, such as when there are more equations than unlsnofrsystem is overdetermined
when it is inconsistent and has no solutions.

Extra constraints are necessary to obtain unique and staloigons. For example, constraints may
be placed on the range of joint motion and the solution mayeheired to minimize the kinetic
energy of the system.

Copyright(© 2005 David Fleet and Aaron Hertzmann 113

CSC418/CSCD18/CSC2504 Animation

16.4 Motion Capture

In motion capture, an actor has a number of small, round madiéached to his or her body that
reflect light in frequency ranges that motion capture camara specifically designed to pick up.

(image from movement.nyu.edu)

With enough cameras, it is possible to reconstruct the iposiif the markers accurately in 3D.
In practice, this is a laborious process. Markers tend toidéem from cameras and 3D recon-
structions fail, requiring a user to manually fix such dropsourhe resulting motion curves are
often noisy, requiring yet more effort to clean up the motiata to more accurately match what
an animator wants.

Despite the labor involved, motion capture has become alpofechnique in the movie and game
industries, as it allows fairly accurate animations to leated from the motion of actors. However,
this is limited by the density of markers that can be placed single actor. Faces, for example,
are still very difficult to convincingly reconstruct.

Copyright(© 2005 David Fleet and Aaron Hertzmann 114

CSC418/CSCD18/CSC2504 Animation

e Pros:
— Captures specific style of real actors
e Cons:

— Often not expressive enough
— Time consuming and expensive
— Difficult to edit

e Uses:

— Character animation
— Medicine, such as kinesiology and biomechanics

16.5 Physically-Based Animation

It is possible to simulate the physics of the natural worlgeaerate realistic motions, interactions,
and deformationsDynamicsrely on the time evolution of a physical system in responderies.

Newton’s second law of motion stat¢és= ma, wheref is force,m is mass, and is acceleration.

If () is the path of an object or point mass, thén) = “% s velocity anda(t) = d‘;f) — L=(t)

is acceleration. Forces and mass combine to determlneemaneh i.e. any change in motion.

In forward simulation or forward dynamics, we specify the initial values for position and ve-
Iocity z(0) andv(0), and the forces Then we computét), v(t), x=(t) wherea(t) = %
= [, a(t)dt +v(0), andz(t) = [v(t)dt + (0).

Forward simulation has the advantage of being reasonabfteaimulate. However, a simulation
is often very sensitive to initial conditions, and it is aftdifficult to predict pathsc(¢) without
running a simulation—in other words, control is hard.

With inverse dynamics constraints on a path(t) are specified. Then we attempt to solve for the
forces required to produce the desired path. This techragnée very difficult computationally.

Physically-based animation has the advantages of:
e Realism,
e Long simulations are easy to create,

e Natural secondary effects such as wiggles, bending, and-sentaterials behave naturally,

Copyright(© 2005 David Fleet and Aaron Hertzmann 115

CSC418/CSCD18/CSC2504 Animation

¢ Interactions between objects are also natural.

The main disadvantage of physically-based animation isattieof control, which can be critical,
for example, when a complicated series of events needs todoeled or when an artist needs
precise control over elements in a scene.

e Pros:
— Very realistic motion
e Cons:

— Very slow
— Very difficult to control
— Not expressive

e Uses:

— Complex physical phenomena

16.5.1 Single 1D Spring-Mass System

Spring-mass systems are widely used to model basic physistms. In a 1D spring,(t) repre-
sents the position of mass, increasing downwards.

!

¥ spring
mass

A spring has resting lengthand stiffness. Deformation force is linear in the difference from the
resting length. Hence, a spring’s internal force, accagrdinHooke’s Law, isf*(t) = k(I — z(t)).

The external forces acting on a spring include gravity amdftittion of the medium. That is,
f9=mgandfi(t) = —pu(t) = —p= wherep is the damping constant.

Hence, the total force acting on a springig) = f*(¢)+ f¢+ f¢(t). Then we may use(t) = %
with initial conditionsz(0) = x, andv(0) = v, to find the position, velocity, and acceleration of a
spring at a given time.

Copyright(© 2005 David Fleet and Aaron Hertzmann 116

CSC418/CSCD18/CSC2504 Animation

16.5.2 3D Spring-Mass Systems

Mass-spring systems may be used to model approximationsr® complicated physical systems.
Rope or string may be modeled by placing a number of springgeedd, and cloth or rubber
sheets may be modeled by placing masses on a grid and comgpadjacent masses by springs.

Let theith massin;, be at locatiom;(t), with elementsz;(t), v;(t), z(t). Letl;; denote the resting
length andk;; the stiffness of the spring between massasd;.

Theinternal force for massi is
s Pi — Dj
() = —kjeym———,
i) = ey, =

wheree;; = li; — |lpi — pj.

Note:

Itis the case thaf;;(t) = —f55(t).

The net total internal force on a masis then

fi(t) = Z f{o}(tL

JEN;
whereN; is the set of indices of neighbors of mass

16.5.3 Simulation and Discretization

A common approach to discretizing over time in a physicalation is to use a numerical ordi-
nary differential equation solver, such as the Runge-Kuttthod, with finite difference approxi-
mations to derivatives.

To find an approximation ta(¢), we choose a time incremend so the solution is computed at

The simplest approach is the use Euler time integration feithvard differences:

Copyright(© 2005 David Fleet and Aaron Hertzmann 117

CSC418/CSCD18/CSC2504 Animation

e Updater;(t + At) = v;(t) + Ata,(t).

16.5.4 Particle Systems

A particle system fakes passive dynamics to quickly rendergiex systems such as fire, flowing
water, and sparks. A patrticle is a point in space with somecst®d parameters such as velocity,
time to live, color, or whatever else might be appropriatetfe given application. During a
simulation loop, particles are created by emitters thagrd@ne their initial properties, and existing
particles are removed if their time to live has been exceedlkd physical rules of the system are
then applied to each of the remaining particles, and theyear@ered to the display. Particles are
usually rendered as flat textures, but they may be rendemabgurally or with a small mesh as
well.

16.6 Behavioral Animation

=
o

X

\\
A

/;&

Flocking behaviors

Particle systems don’t have to model physics, since rulgsbeaarbitrarily specified. Individual

particles can be assigned rules that depend on their nesijo to the world and other particles,
effectively giving them behaviors that model group intéi@ts. To create particles that seem to
flock together, only three rules are necessary to simulgtaragon between patrticles, alignment
of particle steering direction, and the cohesion of a grdygaaticles.

Copyright(© 2005 David Fleet and Aaron Hertzmann 118

CSC418/CSCD18/CSC2504 Animation

FPS:142.46
S:1.0W:1.0SP:1.9 AV:D.1
] 616.00
v 334ms stime:0.681ms

Particles that flock and steer around obstacles

More complicated rules of behavior can be designed to cblaitge crowds of detailed characters
that would be nearly impossible to manually animate by hafalvever, it is difficult to program
characters to handle all but simple tasks automaticallychSachniques are usually limited to
animating background characters in large crowds and cteaisaa games.

A crowd with rule-based behaviors

e Pros:

Copyright(© 2005 David Fleet and Aaron Hertzmann 119

CSC418/CSCD18/CSC2504 Animation

— Automatic animation
— Real-time generation
e Cons:

— Human behavior is difficult to program

e Uses:

— Crowds, flocks, game characters

16.7 Data-Driven Animation

Data-driven animation uses information captured from #a world, such as video or captured
motion data, to generate animation. The technique of vidgtutes finds points in a video se-
guence that are similar enough that a transition may be matew appearing unnatural to a
viewer, allowing for arbitrarily long and varied animatiémom video. A similar approach may
be taken to allow for arbitrary paths of motion for a 3D ch&saby automatically finding frames
in motion capture data or keyframed sequences that areasitaibther frames. An animator can
then trace out a path on the ground for a character to follow,the animation is automatically
generated from a database of motion.

e Pros:

— Captures specific style of real actors
— Very flexible
— Can generate new motion in real-time

e Cons:

— Requires good data, and possibly lots of it

e Uses:

— Character animation

Copyright(©) 2005 David Fleet and Aaron Hertzmann 120

