Examination: - UG 5th Semester (NEP) Subject Type: Major (CT-01) Subject: Information Technology

Paper Title: Operating Systems and Shell Programming Session: 2024-25 Batch: - 2022

Max. Marks: - 60 Min. Marks: - 24 Time: - 02 Hours

Note: (Attempt any two questions from Section "A", five from Section "B"& all questions from Section "C")

Section A: Long answer type. (400 Words) Attempt any two questions $(2 \times 10 = 20 \text{ marks})$

Q1: Explain Process Control Block in detail also draw Process state diagram.

Q2: Why synchronization is required in a multi-process system? Explain Race condition.

Q3: What are Semaphores? Explain Reader/Writer Problem.

Q4: With the help of an example explain the concept of paging.

Section B: Medium answer type. (150 Words) Attempt any five questions (5 x 4 = 20 marks)

Q5: What are various types of Operating Systems? Explain.

Q6: With the help of an example explain Round Robin Scheduling algorithm.

Q7: Discuss Mutual Exclusion.

Q8: Explain Banker's algorithm.

Q9: What is virtual memory? What are its uses?

Q10: Explain C-SCAN disk scheduling method.

Q11: Write a note on evolution of Operating Systems.

Section C: Short answer type. (20 Words) Attempt all questions (8 x 2.5 = 20 marks)

Q12: Define Operating System.

Q13: What are various types of process scheduling?

Q14: What is a Thread?

Q15: What are necessary conditions for deadlock?

Q16: What is Cache memory?

Q17: What is Segmentation?

Q18: What do you mean by File organization?

Q19: What is virtual memory.

Examination: - UG 5th Semester (NEP)
Paper Title: Theory of Computation
Max. Marks: - 80
Note: (Attempt any two questions from Section "A", five from Section "B"& all questions from Section "C")

Section A: Long answer type. (400 Words)

Attempt any two questions (2 x 13 = 26 marks)

Q1: Differentiate between Mealy and Moore machines. Provide an example for each.

Q2: Explain Pushdown automata (PDA) and describe how PDAs are equivalent to CFGs.

Q3: Define Turing machines and explain their role in the Church-Turing thesis.
Q4: Discuss NP-completeness. Why is it important in computational complexity theory?

Section B: Medium answer type. (150 Words) Attempt any five questions (5 x 6 = 30 marks)

Q5: Define regular operations and explain their closure properties with examples.

Q6: Discuss the role of finite automata in recognizing languages.

Q7: Define context-free grammar (CFG) and explain its components.

.Q8: Explain in detail Chomsky hierarchy of grammars.

Q9: Explain the components and working of a Turing machine.

Q10: Provide an example of a language that is recursively enumerable but not recursive.

Q11: Explain asymptotic notations and their use in analyzing time complexity.

Section C: Short answer type. (20 Words) Attempt all questions (8 \times 3 = 24 marks)

Q12: What are the key features of deterministic finite automata (DFA)?

Q13: Define regular expressions and give an example.

Q14: What is ambiguity in a CFG? Give a simple example.

Q15: What is a pushdown automaton?

Q16: List the components of a Turing machine.

Q17: Give one example of a recursive language.

Q18: What is the class P in computational complexity?

Q19: What is the significance of the P vs NP problem?

Examination: - UG 5th Semester (NEP) Paper Title: Microprocessor Systems

Subject Type: Major (CT-02)

Subject: Information Technolog

Max. Marks: - 80

Session: 2024-25 Min. Marks: - 32

Batch: - 2022

Time: - 02 Hours

Note: (Attempt any two questions from Section "A", five from Section "B"& all questions from Section "C")

Section A: Long answer type. (400 Words) Attempt any two questions $(2 \times 13 = 26 \text{ marks})$

Q2: Write a detailed note on the assembly process and tools.

Q3: Explain the ARM memory organization and addressing modes.

791056.

Q4: Describe the trends in microprocessor technology.

Section B: Medium answer type. (150 Words) Attempt any five questions (5 x 6 = 30 marks)

Q5: Explain the key features of Von Neumann architecture.

Q6: Explain the addressing modes of the 8086 microprocessor with examples.

Q: Describe the steps involved in the assembly process.

Q8: Write an assembly language program for adding two 16-bit numbers using the 8086 instruction set.

Q9: Explain the register organization in an ARM processor.

Q10: Describe the various data types used in ARM programming.

Q11: Compare any two emerging microprocessor architectures in terms of features and applications.

Section C: Short answer type. (20 Words) Attempt all questions (8 \times 3 = 24 marks)

Q12: Define microprocessor, microcomputer, and embedded systems.

Q13: What is the significance of memory addressing in microcomputers?

Q14: Define the role of assemblers in assembly language programming.

Q15: What is the function of control flow instructions in 8086?

Q16: What is the role of registers in ARM processors?

Q17: What are ARM development tools? Name two.

218: List three applications of the 8086 microprocessor in real-world systems.

19: Define the term "emerging microprocessor architecture."

<u>CLUSTER UNIVERSITY SRINAGAR</u> Examination: - UG 6th Semester (NEP) Subject Type: Major (CT-01) Subject: Information Technolog Paper Title: Data Communication and Networks Max. Marks: - 60 Note: (Attempt any two questions from Section "A", five from Section "B"& all questions from Section "C") ****** Section A: Long answer type. (400 Words) Attempt any two questions $(2 \times 10 = 20 \text{ marks})$ 1: Explain Shannon Law of a Noisy channel. Q2: Explain OSI reference model. Q3: Differentiate between circuit-switched and packet-switched techniques. Q4: Explain digital to analog conversion. Section B: Medium answer type. (150 Words) Attempt any five questions $(5 \times 4 = 20 \text{ marks})$ Q5: Discuss and Bus and hybrid network topologies. Q6: What is difference between Digital and analog signal? Explain with suitable examples. Q7: What is Circuit Switching? Q8: Explain Time Division Multiplexing. Q9: Explain QoS in switched networks, . Q10: What are various layers available in TCP/IP model. Q11: What is multicasting? Explain PIM. Section C: Short answer type. (20 Words) Attempt all questions (8 x 2.5 = 20 marks) **Q12**: Define media. ▶ **Q13**: What is Bit Rate? Q14: What is unguided media? Q15: Define ISDN. Q16: Define Ethernet. 217: What uni-cast routing? **√Q18**: What is a Domain Name? ♠ Q19: Define SMTP.

Examination: - UG 6th Semester (NEP) Paper Title: Data Science with Python

Subject Type: Major (CT-02)

Subject: IT Batch: - 2022

Max. Marks: - 80

Session: 2025 Min. Marks: - 32

Time: - 02 Hours

Note: (Attempt any two questions from Section "A", five from Section "B"& all questions from Section "C")

Section A: Long answer type. (400 Words) Attempt any two questions $(2 \times 13 = 26 \text{ marks})$

21: Explain the complete CRISP-DM process with its phases.

Q2: Discuss the purpose of Jupyter Notebook in data science.

Q3: Explain various techniques for handling missing data, duplicates, and inconsistent data types.

Q4: Explain how Matplotlib and Seaborn help in visualizing data?

Section B: Medium answer type. (150 Words) Attempt any five questions (5 x 6 = 30 marks)

Q5: Explain the importance of data modeling and deployment.

Q6: What are the key steps in a typical data science workflow?

7: Describe the use of Pandas Series in data science.

Q8: Explain the structure and purpose of Jupyter Notebook.

9: What is the purpose of data cleaning? Mention any three techniques.

Q10: Write a Python code using Seaborn to create a scatter plot.

Q11: What are histograms? How do they help in data distribution analysis?

Section C: Short answer type. (20 Words) Attempt all questions (8 \times 3 = 24 marks)

Q12: Mention any three applications of data science.

Q13: What is the purpose of data exploration?

Q14: What is NumPy used for?

Q15: Mention any two operations that can be performed on dictionaries.

Q16: What are summary statistics? Give an example.

Q17: Name any three file formats supported by Pandas for reading data.

Q18: What is a scatter plot used for?

Q19: List any three types of plots used for data visualization.

Examination: - UG 6th Semester (NEP) Subject Type: Major (CT-03) Paper Title: Software Engineering with Mini Project Subject: IT Batch: - 2022 Max. Marks: - 80 Min. Marks: - 32 Session: 2025 Time: - 02 Hours Note: (Attempt any two questions from Section "A", five from Section "B"& all questions from Section "C") ********** Section A: Long answer type. (400 Words) Attempt any two questions $(2 \times 13 = 26 \text{ marks})$ ✓Q1: Explain the Capability Maturity Model Integration (CMMI) in detail. ❖ Q2: Compare and contrast the Waterfall Model, Incremental Process Model, and Agile Methodology. Q3: Write a detailed note on Software Quality Assurance (SQA)? Q4: Discuss various software testing techniques with suitable examples. Section B: Medium answer type. (150 Words) Attempt any five questions (5 x 6 = 30 marks) ✓ Q5: Discuss the concept and advantages of a Layered Technology in software engineering. **Q6:** Explain the importance of Software Metrics in measuring software project performance. 7: Discuss the process of Eliciting Requirements. 28: Differentiate between Verification and Validation in Software Engineering? → O9: Describe the Basic COCOMO Model in detail. 210: Discuss Lean Software Development.. Q11: Explain the Object-Oriented Analysis approach in system modeling. Section C: Short answer type. (20 Words) Attempt all questions (8 x 3 = 24 marks) Q12: Write a short note on software process. Q13: What is the purpose of Capability Maturity Model Integration (CMMI)? Q14: Differentiate between Continuous Integration and Continuous Delivery. Q15: State any three principles of Lean Software Development. Q16: What is a Software Requirements Document (SRD)? Q17: What is the role of a Feasibility Study in software development? Q18: Define Software Risk Management. Q19: Distinguish between Static Testing and Dynamic Testing.