
What is Python

Python is a general-purpose, dynamically typed, high-level, compiled and interpreted,

garbage-collected, and purely object-oriented programming language that supports

procedural, object-oriented, and functional programming.

Features of Python:

o Easy to use and Read - Python's syntax is clear and easy to read, making it an

ideal language for both beginners and experienced programmers. This simplicity

can lead to faster development and reduce the chances of errors.

o Dynamically Typed - We do not need to specify the data type of a variable during

writing codes. The data types of variables are determined during run-time.

o High-level - High-level language means human readable code.

o Compiled and Interpreted - Python code first gets compiled into bytecode, and then

interpreted line by line.

o Garbage Collected - Memory allocation and de-allocation are automatically

managed. Programmers do not specifically need to manage the memory.

o Purely Object-Oriented - It refers to everything as an object, including numbers and

strings.

o Cross-platform Compatibility - Python can be easily installed on Windows,

macOS, and various Linux distributions, allowing developers to create software that

runs across different operating systems.

o Open Source - Python is an open-source, cost-free programming language. It is

utilized in several sectors and disciplines as a result.

Python Variables

A variable is the name given to a memory location. A value-holding Python variable is also

known as an identifier.

Since python is dynamically typed languages we do not need to specify the data type while writing the

code , it will automatically assigns valid datatype during run time .

Variable names must begin with a letter or an underscore, but they can be a group of

both letters and digits.

Python Is a case senestivite languages which means , Both Rahul and rahul are distinct

variables.

Identifier Naming

o The variable's first character must be an underscore or alphabet (_).

o Every one of the characters with the exception of the main person might be a letter

set of lower-case(a-z), capitalized (A-Z), highlight, or digit (0-9).

o White space and special characters (!, @, #, %, etc.) are not allowed in the identifier

name. ^, &, *).

o Identifier name should not be like any watchword characterized in the language.

o Names of identifiers are case-sensitive; for instance, my name, and MyName isn't

something very similar.

o Examples of valid identifiers: a123, _n, n_9, etc.

o Examples of invalid identifiers: 1a, n%4, n 9, etc.

Python Variable Types

There are two types of variables in Python - Local variable and Global variable. Let's

understand the following variables.

Local Variable

The variables that are declared within the function and have scope within the function are

known as local variables. Let's examine the following illustration.

Example -

1. # Declaring a function

2. def add():

3. # Defining local variables. They has scope only within a function

4. a = 20

5. b = 30

6. c = a + b

7. print("The sum is:", c)

8.

9. # Calling a function

10. add()

Output:

The sum is: 50

Explanation:

We declared the function add() and assigned a few variables to it in the code above. These

factors will be alluded to as the neighborhood factors which have scope just inside the

capability. We get the error that follows if we attempt to use them outside of the function.

1. add()

2. # Accessing local variable outside the function

3. print(a)

Output:

The sum is: 50

 print(a)

NameError: name 'a' is not defined

We tried to use local variable outside their scope; it threw the NameError.

Global Variables

Global variables can be utilized all through the program, and its extension is in the whole

program. Global variables can be used inside or outside the function.

By default, a variable declared outside of the function serves as the global variable. Python

gives the worldwide catchphrase to utilize worldwide variable inside the capability. The

function treats it as a local variable if we don't use the global keyword. Let's examine the

following illustration.

Example -

1. # Declare a variable and initialize it

2. x = 101

3.

4. # Global variable in function

5. def mainFunction():

6. # printing a global variable

7. global x

8. print(x)

9. # modifying a global variable

10. x = 'Welcome To Javatpoint'

11. print(x)

12.

13. mainFunction()

14. print(x)

Output:

101

Welcome To Javatpoint

Welcome To Javatpoint

Explanation:

In the above code, we declare a global variable x and give out a value to it. We then

created a function and used the global keyword to access the declared variable within the

function. We can now alter its value. After that, we gave the variable x a new string value

and then called the function and printed x, which displayed the new value.

=

ADVERTISEMENT

Delete a variable

We can delete the variable using the del keyword. The syntax is given below.

Syntax -

1. del <variable_name>

In the following example, we create a variable x and assign value to it. We deleted variable

x, and print it, we get the error "variable x is not defined". The variable x will no longer

use in future.

Example -

1. # Assigning a value to x

2. x = 6

3. print(x)

4. # deleting a variable.

5. del x

6. print(x)

Output:

6

Traceback (most recent call last):

 File "C:/Users/DEVANSH SHARMA/PycharmProjects/Hello/multiprocessing.py",

line 389, in

 print(x)

NameError: name 'x' is not defined

Getting User Input in Python

In Python, the input() function is used to get input from the user. This function

reads a line from input, converts it into a string (stripping a trailing newline), and

returns that string.

Basic Example

Here is a simple example demonstrating how to use the input() function to get

user input and then use that input in your program:

python

Copy code

Prompt the user for their name

name = input("Enter your name: ")

Prompt the user for their age

age = input("Enter your age: ")

Print the input received

print("Hello, " + name + "! You are " + age + " years

old.")

Explanation

1. Prompting for Input:

o input("Enter your name: "): This function displays the
prompt Enter your name: and waits for the user to type
something and press Enter. The input is then returned as a string.

o name = input("Enter your name: "): The returned string
is stored in the variable name.

o age = input("Enter your age: "): Similarly, the user's
input for age is stored in the variable age.

2. Printing the Input:

o print("Hello, " + name + "! You are " + age + "

years old."): This concatenates the strings and variables to
create a message that includes the user's input, which is then
displayed.

Handling Different Data Types

By default, the input() function returns the input as a string. If you need to

work with other data types, such as integers or floats, you must convert the input

string to the desired type using functions like int() or float().

Example with Integer Conversion
python

Prompt the user for a number and convert it to an

integer

number = int(input("Enter a number: "))

Perform a calculation (e.g., square the number)

squared = number ** 2

Print the result

print("The square of " + str(number) + " is " +

str(squared) + ".")

Explanation

1. Converting Input:

o int(input("Enter a number: ")): This first calls
input("Enter a number: ") to get the user input as a string,
and then int() converts that string to an integer.

2. Performing Calculations:

o squared = number ** 2: This calculates the square of the
number.

3. Printing the Result:
o print("The square of " + str(number) + " is " +

str(squared) + "."): This concatenates the strings and
variables, converting integers back to strings where necessary, to
create a message displaying the result.

By using the input() function and the appropriate type conversions, you can

effectively gather and use user input in your Python programs.

Python If-else statements

Decision making is the most important aspect of almost all the programming languages.

As the name implies, decision making allows us to run a particular block of code for a

particular decision. Here, the decisions are made on the validity of the particular

conditions. Condition checking is the backbone of decision making.

In python, decision making is performed by the following statements.

Statement Description

If Statement The if statement is used to test a specific condition. If the condition is true, a block of code (if-block) will be

executed.

If - else

Statement

The if-else statement is similar to if statement except the fact that, it also provides the block of the code for

the false case of the condition to be checked. If the condition provided in the if statement is false, then the

else statement will be executed.

Nested if

Statement

Nested if statements enable us to use if ? else statement inside an outer if statement.

Indentation in Python

For the ease of programming and to achieve simplicity, python doesn't allow the use of

parentheses for the block level code. In Python, indentation is used to declare a block. If

two statements are at the same indentation level, then they are the part of the same block.

Generally, four spaces are given to indent the statements which are a typical amount of

indentation in python.

Backward Skip 10sPlay VideoForward Skip 10s

Indentation is the most used part of the python language since it declares the block of

code. All the statements of one block are intended at the same level indentation. We will

see how the actual indentation takes place in decision making and other stuff in python.

The if statement

The if statement is used to test a particular condition and if the condition is true, it

executes a block of code known as if-block. The condition of if statement can be any valid

logical expression which can be either evaluated to true or false.

The syntax of the if-statement is given below.

1. if expression:

2. statement

Example 1

1. # Simple Python program to understand the if statement

2. num = int(input("enter the number:"))

3. # Here, we are taking an integer num and taking input dynamically

4. if num%2 == 0:

5. # Here, we are checking the condition. If the condition is true, we will enter the block

6. print("The Given number is an even number")

Output:

enter the number: 10

The Given number is an even number

Example 2 : Program to print the largest of the three numbers.

1. # Simple Python Program to print the largest of the three numbers.

2. a = int (input("Enter a: "));

3. b = int (input("Enter b: "));

4. c = int (input("Enter c: "));

5. if a>b and a>c:

6. # Here, we are checking the condition. If the condition is true, we will enter the block

7. print ("From the above three numbers given a is largest");

8. if b>a and b>c:

9. # Here, we are checking the condition. If the condition is true, we will enter the block

10. print ("From the above three numbers given b is largest");

11. if c>a and c>b:

12. # Here, we are checking the condition. If the condition is true, we will enter the block

13. print ("From the above three numbers given c is largest");

Output:

Enter a: 100

Enter b: 120

Enter c: 130

From the above three numbers given c is largest

The if-else statement

The if-else statement provides an else block combined with the if statement which is

executed in the false case of the condition.

If the condition is true, then the if-block is executed. Otherwise, the else-block is executed.

The syntax of the if-else statement is given below.

1. if condition:

2. #block of statements

3. else:

4. #another block of statements (else-block)

Example 1 : Program to check whether a person is eligible to
vote or not.

1. # Simple Python Program to check whether a person is eligible to vote or not.

2. age = int (input("Enter your age: "))

3. # Here, we are taking an integer num and taking input dynamically

4. if age>=18:

5. # Here, we are checking the condition. If the condition is true, we will enter the block

6. print("You are eligible to vote !!");

7. else:

8. print("Sorry! you have to wait !!");

Output:

Enter your age: 90

You are eligible to vote !!

Example 2: Program to check whether a number is even or not.

1. # Simple Python Program to check whether a number is even or not.

2. num = int(input("enter the number:"))

3. # Here, we are taking an integer num and taking input dynamically

4. if num%2 == 0:

5. # Here, we are checking the condition. If the condition is true, we will enter the block

6. print("The Given number is an even number")

7. else:

8. print("The Given Number is an odd number")

Output:

enter the number: 10

The Given number is even number

The elif statement

The elif statement enables us to check multiple conditions and execute the specific block

of statements depending upon the true condition among them. We can have any number

of elif statements in our program depending upon our need. However, using elif is

optional.

The elif statement works like an if-else-if ladder statement in C. It must be succeeded by

an if statement.

The syntax of the elif statement is given below.

1. if expression 1:

2. # block of statements

3.

4. elif expression 2:

5. # block of statements

6.

7. elif expression 3:

8. # block of statements

9.

10. else:

11. # block of statements

Example 1

1. # Simple Python program to understand elif statement

2. number = int(input("Enter the number?"))

3. # Here, we are taking an integer number and taking input dynamically

4. if number==10:

5. # Here, we are checking the condition. If the condition is true, we will enter the block

6. print("The given number is equals to 10")

7. elif number==50:

8. # Here, we are checking the condition. If the condition is true, we will enter the block

9. print("The given number is equal to 50");

10. elif number==100:

11. # Here, we are checking the condition. If the condition is true, we will enter the block

12. print("The given number is equal to 100");

13. else:

14. print("The given number is not equal to 10, 50 or 100");

Output:

Enter the number?15

The given number is not equal to 10, 50 or 100

Example 2

1. # Simple Python program to understand elif statement

2. marks = int(input("Enter the marks? "))

3. # Here, we are taking an integer marks and taking input dynamically

4. if marks > 85 and marks <= 100:

5. # Here, we are checking the condition. If the condition is true, we will enter the block

6. print("Congrats ! you scored grade A ...")

7. elif marks > 60 and marks <= 85:

8. # Here, we are checking the condition. If the condition is true, we will enter the block

9. print("You scored grade B + ...")

10. elif marks > 40 and marks <= 60:

11. # Here, we are checking the condition. If the condition is true, we will enter the block

12. print("You scored grade B ...")

13. elif (marks > 30 and marks <= 40):

14. # Here, we are checking the condition. If the condition is true, we will enter the block

15. print("You scored grade C ...")

16. else:

17. print("Sorry you are fail ?")

Output:

Enter the marks? 89

Congrats ! you scored grade A ...

Functions in Python

A function is a reusable block of code that performs a specific task.

Defining a Function

You use the def keyword to define a function.

python

Copy code

def greet(name):

 print(f"Hello, {name}!")

Calling a Function

You call a function by its name followed by parentheses, passing any required arguments.

python

Copy code

greet("Alice") # Output: Hello, Alice!

Scoping

Scoping determines the visibility of variables. Python uses the LEGB rule: Local, Enclosing,

Global, Built-in.

Scope Levels

 Local: Inside the current function.
 Enclosing: In the enclosing functions (nested functions).
 Global: At the top level of the module.
 Built-in: Names in the built-in scope (like print, len).

Example:
python

Copy code

x = "global"

def outer_function():

 x = "enclosing"

 def inner_function():

 x = "local"

 print(x) # Output: local

 inner_function()

 print(x) # Output: enclosing

outer_function()

print(x) # Output: global

Arguments

Functions can take arguments to perform operations on them.

Positional Arguments

Arguments are passed in order.

python

Copy code

def add(a, b):

 return a + b

print(add(2, 3)) # Output: 5

Keyword Arguments

Arguments are passed with names.

python

Copy code

def add(a, b):

 return a + b

print(add(a=2, b=3)) # Output: 5

print(add(b=3, a=2)) # Output: 5

Default Arguments

Arguments with default values.

python

Copy code

def greet(name, greeting="Hello"):

 print(f"{greeting}, {name}!")

greet("Alice") # Output: Hello, Alice!

greet("Bob", "Hi") # Output: Hi, Bob!

Variable-length Arguments

Allows passing a variable number of arguments.

 Arbitrary Positional Arguments:

python

Copy code

def fun(*args):

 for arg in args:

 print(arg)

fun(1, 2, 3) # Output: 1 2 3

 Arbitrary Keyword Arguments:

python

Copy code

def fun(**kwargs):

 for key, value in kwargs.items():

 print(f"{key}: {value}")

fun(name="Alice", age=30) # Output: name: Alice age: 30

Return Values

Functions can return values using the return statement.

python

Copy code

def square(x):

 return x ** 2

result = square(4)

print(result) # Output: 16

Advanced Function Calling

Lambda Functions

Small anonymous functions defined with lambda.

python

Copy code

square = lambda x: x ** 2

print(square(5)) # Output: 25

Using lambda in higher-order functions

numbers = [1, 2, 3, 4]

squared_numbers = list(map(lambda x: x ** 2, numbers))

print(squared_numbers) # Output: [1, 4, 9, 16]

Higher-order Functions

Functions that accept other functions as arguments or return them.

python

Copy code

def apply_function(func, value):

 return func(value)

def increment(x):

 return x + 1

print(apply_function(increment, 5)) # Output: 6

Closures

Functions that remember variables from their enclosing scope.

python

Copy code

def outer_function(msg):

 def inner_function():

 print(msg)

 return inner_function

closure = outer_function("Hello, world!")

closure() # Output: Hello, world!

Decorators

Functions that extend the behavior of other functions without modifying them.

python

Copy code

def decorator_function(original_function):

 def wrapper_function():

 print("Wrapper executed before", original_function.__name__)

 return original_function()

 return wrapper_function

@decorator_function

def display():

 print("Display function ran")

display()

Output:

Wrapper executed before display

Display function ran

Summary

 Functions: Defined with def, take arguments, and return values.
 Scoping: Follows the LEGB rule.
 Arguments: Positional, keyword, default, and variable-length.
 Advanced Concepts: Lambda functions, higher-order functions, closures, and decorators.

Lists

 Definition: A list is a mutable, ordered collection of elements. Elements can be of different
types, and lists are defined using square brackets.

 Operations:
o Creating a list: Defining a list with initial values, e.g., my_list = [1, 2, 3].
o Accessing elements: Retrieving elements using their index, e.g., my_list[0] returns 1.
o Adding elements: Appending new elements to the end of the list with

my_list.append(element).

o Removing elements: Deleting elements by value with my_list.remove(value) or by
index with del my_list[index].

o Slicing: Extracting a portion of the list using a range of indices, e.g., my_list[1:3].

Tuples

 Definition: A tuple is an immutable, ordered collection of elements. Tuples are defined using
parentheses and cannot be changed once created.

 Operations:
o Creating a tuple: Defining a tuple with initial values, e.g., my_tuple = (1, 2, 3).
o Accessing elements: Retrieving elements using their index, e.g., my_tuple[0] returns

1.
o Immutability: Tuples cannot be altered after their creation, meaning you cannot add,

remove, or modify elements.
o Slicing: Extracting a portion of the tuple using a range of indices, e.g., my_tuple[1:3].

Sequences

 Definition: Sequences are an abstract data type that includes lists, tuples, and strings. They are
ordered collections that support indexing and iteration.

 Operations:
o Iteration: Looping through each element of the sequence, e.g., for item in

sequence: print(item).
o Length: Getting the number of elements in the sequence with len(sequence).
o Concatenation: Combining two sequences into one using sequence1 + sequence2.
o Repetition: Repeating the sequence multiple times with sequence * n.

Dictionaries

 Definition: A dictionary is a mutable, unordered collection of key-value pairs. Each key is unique
and maps to a specific value. Dictionaries are defined using curly braces.

 Operations:
o Creating a dictionary: Defining a dictionary with initial key-value pairs, e.g., my_dict =

{'key1': 'value1'}.
o Accessing values: Retrieving values using their keys, e.g., my_dict['key1'] returns

'value1'.
o Adding/Updating: Adding new key-value pairs or updating existing ones with

my_dict[key] = value.
o Removing items: Deleting key-value pairs with del my_dict[key].
o Iterating: Looping through keys and values with for key, value in

my_dict.items():.

Files

 Definition: Files are used to store data on disk. They can be read from or written to, and are
handled using file objects.

 Operations:

o Opening a file: Creating a file object with open('filename.txt', 'mode'), where
mode can be 'r' for reading, 'w' for writing, 'a' for appending, etc.

o Reading a file: Extracting data from the file using methods like file.read(), which
reads the entire content.

o Writing to a file: Saving data to the file using methods like file.write('text').
o Closing a file: Ending the file operation with file.close().

Using context manager: Automatically managing file opening and closing with with

open('filename.txt', 'mode') as file:. for Loop

 Definition: Iterates over a sequence (such as a list, tuple, string, or range) and executes a block
of code for each item in the sequence.

 Syntax:

python

Copy code

for item in sequence:

 # Code to execute

 Examples:
o Iterating over a list:

python

Copy code

fruits = ['apple', 'banana', 'cherry']

for fruit in fruits:

 print(fruit)

o Iterating over a range:

python

Copy code

for i in range(5): # Iterates from 0 to 4

 print(i)

o Iterating over a string:

python

Copy code

for char in 'hello':

 print(char)

while Loop

 Definition: Repeats a block of code as long as a specified condition is True.
 Syntax:

python

Copy code

while condition:

 # Code to execute

 Examples:
o Basic while loop:

python

Copy code

count = 0

while count < 5:

 print(count)

 count += 1

o Using while with break:

python

Copy code

count = 0

while True:

 if count >= 5:

 break

 print(count)

 count += 1

Loop Control Statements

 break: Exits the loop prematurely.

python

Copy code

for i in range(10):

 if i == 5:

 break

 print(i)

 continue: Skips the current iteration and continues with the next iteration of the loop.

python

Copy code

for i in range(10):

 if i % 2 == 0:

 continue

 print(i) # Prints only odd numbers

 else: An optional clause that executes after the loop completes normally (i.e., not terminated
by break).

python

Copy code

for i in range(5):

 print(i)

else:

 print('Loop completed successfully')

These loops and control statements help in efficiently handling repetitive tasks and iterating

through collections of data in Python.

o

