
Python

Python is a general-purpose, dynamically typed, high-level, compiled and

interpreted, garbage-collected, and purely object-oriented programming language

that supports procedural, object-oriented, and functional programming.

Features of python:

1. Easy to use and Read: Python's syntax is clear and easy to read, making it

an ideal language for both beginners and experienced programmers. This
simplicity can lead to faster development and reduce the chances of errors.

2. Object-Oriented: Python has all features of an object-oriented language

such as inheritance, method overriding, objects, etc. Thus it supports all the

paradigms and has corresponding functions in their libraries. It also supports

the implementation of multiple inheritances.

3. Portable: A programming language is portable if it allows us to code once

and runs anywhere. This means the platform where it has been coded and

where it is going to run need not be the same. This feature allows one of the

most valuable features of object-oriented languages-reusability.

4. Dynamically Typed - The data types of variables are determined during
run-time. We do not need to specify the data type of a variable during
writing codes.

5. High-level - High-level language means human readable code.

6. Compiled and Interpreted - Python code first gets compiled into bytecode,
and then interpreted line by line. When we download the Python in our
system form org we download the default implement of Python known as
CPython. CPython is considered to be Complied and Interpreted both.

7. Garbage Collected - Memory allocation and de-allocation are automatically
managed. Programmers do not specifically need to manage the memory.

8. Cross-platform Compatibility - Python can be easily installed on
Windows, Mac OS, and various Linux distributions, allowing developers to
create software that runs across different operating systems.

9. Rich Standard Library - Python comes with several standard libraries that
provide ready-to-use modules and functions for various tasks, ranging from
web development and data manipulation to machine learning and
networking.

10. Open Source - Python is an open-source, cost-free programming language.
It is utilized in several sectors and disciplines as a result.

Data types in python:
Python Data Types are used to define the type of a variable. It defines what type of

data we are going to store in a variable. The data stored in memory can be of many

types. For example, a person's age is stored as a numeric value and his or her

address is stored as alphanumeric characters.

The following are the standard or built-in data types in Python:

 Numeric

 Sequence Type

 Boolean

 Set

 Dictionary

Numeric Data Types in Python

The numeric data type in Python represents the data that has a numeric value. A

numeric value can be an integer, a floating number, or even a complex number.

These values are defined as Python int, Python float, and Python complex classes

in Python.

Note – type() function is used to determine the type of Python data type.

Example:

a = 5

print("Type of a: ", type(a))

https://www.geeksforgeeks.org/python-int-function/
https://www.geeksforgeeks.org/float-in-python/
https://www.geeksforgeeks.org/python-complex-function/
https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-type-function/

b = 5.0

print("\nType of b: ", type(b))

c = 2 + 4j

print("\nType of c: ", type(c))

Output:
Type of a: <class 'int'>

Type of b: <class 'float'>

Type of c: <class 'complex'>

2. Sequence Data Types in Python
The sequence Data Type in Python is the ordered collection of similar or different

Python data types. Sequences allow storing of multiple values in an organized and

efficient fashion. There are several sequence data types of Python:

1. Python String

2. Python List

3. Python Tuple

1) String Data Type
A string is a collection of one or more characters put in a single quote, double-

quote, or triple-quote. In Python, there is no character data type Python, a character

is a string of length one. It is represented by str class.

Creating String

Strings in Python can be created using single quotes, double quotes, or even triple

quotes.

Example:

String1 = 'Welcome to the Geeks World'

print(String1)

print(type(String1))

2) List Data Type
A list is a collection of different kinds of values or items. Python lists are mutable,

so, we can change their elements after forming. The comma (,) and the square

brackets [enclose the List's items] serve as separators.

https://www.geeksforgeeks.org/python-data-types/#string
https://www.geeksforgeeks.org/python-data-types/#list
https://www.geeksforgeeks.org/python-data-types/#tuple

Creating a List in Python
Lists in Python can be created by just placing the sequence inside the square

brackets [].

Example:

List = ["Geeks", "For", "Geeks"]

print(List)

3) Tuple Data Type
Just like a list, a tuple is also an ordered collection of Python objects. The only

difference between a tuple and a list is that tuples are immutable i.e. tuples cannot

be modified after it is created. It is represented by a tuple class.

Example:

Tuple1 = ('Geeks', 'For')

print(Tuple1)

3. Python Boolean: type is one of the built-in data types provided

by Python, which represents one of the two values i.e. True or False.

Generally, it is used to represent the truth values of the expressions.

Example
Input: 1==1

Output: True

Input: 2<1

Output: False

List:
A list is a ordered collection of different kinds of values or items. Python lists are

mutable, so, we can change their elements after forming. The comma (,) and the

square brackets [enclose the List's items] serve as separators.

https://www.geeksforgeeks.org/python-tuples/
https://www.geeksforgeeks.org/python-programming-language/

Characteristics of Lists

The characteristics of the List are as follows:

 The lists are in order.

 The list element can be accessed via the index.

 Python Lists are mutable.

 The elements of various type can be stored in a list.

Creating a List

Creating a list

my_list = [1, 2, 3, 4, 5]

print(my_list) # Output: [1, 2, 3, 4, 5]

Accessing Elements

In order to access the list items refer to the index number. Use the index operator

[] to access an item in a list. The index must be an integer. Nested lists are

accessed using nested indexing.

Accessing elements

print(my_list[0]) # Output: 1 (first element)

print(my_list[2]) # Output: 3 (third element)

print(my_list[-1]) # Output: 5 (last element)

print(my_list[-3]) # Output: 3 (3rd last element)

Modifying Elements

Modifying elements

my_list[1] = 10

print(my_list) # Output: [1, 10, 3, 4, 5]

Adding Elements

Adding elements

my_list.append(6)

print(my_list) # Output: [1, 10, 3, 4, 5, 6]

my_list.insert(1, 15)

print(my_list) # Output: [1, 15, 10, 3, 4, 5, 6]

Removing Elements

Removing elements

my_list.remove(10)

print(my_list) # Output: [1, 15, 3, 4, 5, 6]

popped_element = my_list.pop()

print(popped_element) # Output: 6 (last element)

print(my_list) # Output: [1, 15, 3, 4, 5]

Slicing

Slicing

sub_list = my_list[1:4]

print(sub_list) # Output: [15, 3, 4]

Looping Through a List

Looping through a list

for element in my_list:

 print(element)

Checking Membership

Checking membership

print(3 in my_list) # Output: True

print(10 in my_list) # Output: False

Finding Length

Finding length

print(len(my_list)) # Output: 5

Reversing a List

A list can be reversed by using the reverse() method in Python.

Reversing a list

mylist = [1, 2, 3, 4, 5, 'Geek', 'Python']

mylist.reverse()

print(mylist)

Output

https://www.geeksforgeeks.org/python-list-reverse

['Python', 'Geek', 5, 4, 3, 2, 1]

Dictionaries:
A Python dictionary is a data structure that stores the value in key:value pairs.

Dictionaries in Python are a collection of key-value pairs where each key is unique

and is used to store and retrieve values.

Creating a Dictionary

You can create a dictionary using curly braces {} with key-value pairs separated by

colons, or by using the dict() function.

Using curly braces:

my_dict = {

 'name': 'Alice',

 'age': 25,

 'city': 'New York'

}

Using the dict() function:

my_dict = dict(name='Alice', age=25, city='New York')

Accessing Values

You can access values in a dictionary by using the keys.

print(my_dict['name']) # Output: Alice

print(my_dict.get('age')) # Output: 25

The get method is useful as it returns None (or a default value if specified) if the

key is not found, instead of raising an error.

Adding or Updating Entries:

You can add new key-value pairs or update existing ones by simply assigning a

value to a key.

my_dict['email'] = 'alice@example.com' # Adding a new key-value pair

my_dict['age'] = 26 # Updating an existing key-value pair

Removing Entries

You can remove entries using the del statement or the pop method.

del my_dict['city'] # Removes the entry with key 'city'

The pop method removes the key and returns its value

age = my_dict.pop('age')

print(age) # Output: 26

Iterating Through a Dictionary

You can iterate through keys, values, or key-value pairs.

Iterating through keys

for key in my_dict:

 print(key)

Iterating through values

for value in my_dict.values():

 print(value)

Iterating through key-value pairs

for key, value in my_dict.items():

 print(f'{key}: {value}')

Dictionary Methods

Here are some useful dictionary methods:

 clear(): Removes all items from the dictionary.

 copy(): Returns a shallow copy of the dictionary.

 keys(): Returns a view object with all the keys.

 values(): Returns a view object with all the values.

 items(): Returns a view object with all the key-value pairs.

 update(): Updates the dictionary with elements from another dictionary or

an iterable of key-value pairs.

Example Usage

person = {

 'first_name': 'John',

 'last_name': 'Doe',

 'age': 30

}

Accessing a value

print(person['first_name']) # Output: John

Adding a new key-value pair

person['email'] = 'john.doe@example.com'

Updating a value

person['age'] = 31

Removing a key-value pair

del person['last_name']

Iterating through the dictionary

for key, value in person.items():

 print(f'{key}: {value}')

Output:

first_name: John

age: 31

email: john.doe@example.com

loops in Python:
Loops are used to repeatedly execute a block of code as long as a condition is met.

We can run a single statement or set of statements repeatedly using a loop

command.

There are two primary types of loops in Python:

1) For loop

2) While loop

For loop

Python's for loop is designed to repeatedly execute a code block while iterating

through a list, tuple, dictionary, or other iterable objects of Python. The process of

traversing a sequence is known as iteration.

Syntax of the for Loop

for iterator_var in sequence:

 { code to execute }

Loop iterates until the final item of the sequence are reached.

Example:

for i in range(5):

 print(i)

This will output:

0

1

2

3

4

While Loop in Python
In Python, a while loop is used to execute a block of statements repeatedly until a

given condition is satisfied. When the condition becomes false, the line

immediately after the loop in the program is executed.

Python While Loop Syntax:

while expression:

 statement(s)

Example:

count = 0

while count < 5:

 print(count)

 count += 1

This will output:

0

1

2

3

4

Example:

1. counter = 0

2. while counter < 10: # giving the condition

3. counter = counter + 3

4. print("Python Loops")

Output:

Python Loops

Python Loops

Python Loops

Python Loops

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-while-loop/

Nested Loops

Loops can be nested within other loops. The inner loop will be executed one time

for each iteration of the outer loop.

Example:

for i in range(3):

 for j in range(2):

 print(i, j)

This will output:

0 0

0 1

1 0

1 1

2 0

2 1

Conditional Statements:
1) If

2) If-else

if statement

The if statement is used to test a particular condition and if the condition is true, it

executes a block of code known as if-block. The condition of if statement can be any

valid logical expression which can be either evaluated to true or false.

The syntax of the if-statement is given below.

if expression:

 {

#statement (s)

}

Example 1

1. # Simple Python program to understand the if statement

2. num = int(input("enter the number:"))

3. # Here, we are taking an integer num and taking input dynamically

4. if num%2 == 0:

5. # Here, we are checking the condition. If the condition is true, we will enter the blo

ck

6. print("The Given number is an even number")

Output:

enter the number: 10

The Given number is an even number

Example 2 : Program to print the largest of the three numbers.

1. # Simple Python Program to print the largest of the three numbers.

2. a = int (input("Enter a: "));

3. b = int (input("Enter b: "));

4. c = int (input("Enter c: "));

5. if a>b and a>c:

6. # Here, we are checking the condition. If the condition is true, we will enter the blo

ck

7. print ("From the above three numbers given a is largest");

8. if b>a and b>c:

9. # Here, we are checking the condition. If the condition is true, we will enter the blo

ck

10. print ("From the above three numbers given b is largest");

11. if c>a and c>b:

12. # Here, we are checking the condition. If the condition is true, we will enter the blo

ck

13. print ("From the above three numbers given c is largest");

Output:

Enter a: 100

Enter b: 120

Enter c: 130

From the above three numbers given c is largest

The if-else statement

The if-else statement provides an else block combined with the if statement which

is executed in the false case of the condition.

If the condition is true, then the if-block is executed. Otherwise, the else-block is

executed.

The syntax of the if-else statement is given below.

1. if condition:

2. #block of statements

3. else:

4. #another block of statements (else-block)

Example 1 : Program to check whether a person is eligible to vote or

not.

1. # Simple Python Program to check whether a person is eligible to vote or not.

2. age = int (input("Enter your age: "))

3. # Here, we are taking an integer num and taking input dynamically

4. if age>=18:

5. # Here, we are checking the condition. If the condition is true, we will enter the blo

ck

6. print("You are eligible to vote !!");

7. else:

8. print("Sorry! you have to wait !!");

Output:

Enter your age: 90

You are eligible to vote !!

Example 2: Program to check whether a number is even or not.

1. # Simple Python Program to check whether a number is even or not.

2. num = int(input("enter the number:"))

3. # Here, we are taking an integer num and taking input dynamically

4. if num%2 == 0:

5. # Here, we are checking the condition. If the condition is true, we will enter the blo

ck

6. print("The Given number is an even number")

7. else:

8. print("The Given Number is an odd number")

Output:

enter the number: 10

The Given number is even number

These notes are prepared by Suhail Abass Hurrah (S.P College Srinagar, batch 2019)

For any queries, you can email me at Hurrahsuhail1@gmail.com

