
1 | P a g e

PYTHON PROGRAMMING

UNIT 02

What are Modules in Python?

Module is a file that contains code to perform a specific task. A module may

contain Python code, definitions of functions, statements, or classes.

We employ modules to divide complicated programs into smaller, more

understandable pieces. Modules also allow for the reuse of code.

Rather than duplicating their definitions into several applications, we may define our

most frequently used functions in a separate module and then import the complete

module.

An example_module.py file is a module we will create and whose name is

example_module.

Let's construct a module. Save the file as example_module.py after entering the

following.

Example 1:

1. # Here, we are creating a simple Python program to show how to create a module.

2. # defining a function in the module to reuse it

3. def square(number):

4. # here, the above function will square the number passed as the input

5. result = number ** 2

6. return result # here, we are returning the result of the function

Here, a module called example_module contains the definition of the function

square(). The function returns the square of a given number.

Example 2:

Type the following and save it as example.py.

2 | P a g e

Python Module addition

def add(a, b):

 result = a + b

 return result

Here, we have defined a function add() inside a module named example. The

function takes in two numbers and returns their sum.

How to Import Modules in Python?

In Python, we may import functions from one module into our program, or as we

say into, another module.

For this, we make use of the import keyword. In the Python window, we add the

next to import keyword, the name of the module we need to import. We will import

the module we defined earlier example_module.

Syntax:

1. import example_module

The functions that we defined in the example_module are not imported into the

present program. Only the name of the module, i.e., example_ module, is imported

here.

Using the module name we can access the function using the dot . operator. For

example:

Example:

1. # here, we are calling the module square method and passing the value 4

2. result = example_module.square(4)

3. print("By using the module square of number is: ", result)

Output:

3 | P a g e

By using the module square of number is: 16

For example 2: example.add(4,5) # returns 9

There are several standard modules for Python. The complete list of Python standard

modules is available. The list can be seen using the help command.

Similar to how we imported our module, a user-defined module, we can use an

import statement to import other standard modules.

Importing a module can be done in a variety of ways. Below is a list of them.

Python import Statement

Using the import Python keyword and the dot operator, we may import a standard

module and can access the defined functions within it. Here's an illustration.

Suppose we want to get the value of pi, first we import the math module and

use math.pi.

 For example:

import math # import standard math module

print("The value of pi is", math.pi) # use math.pi to get value of pi

Output

The value of pi is 3.141592653589793

Importing and also Renaming

While importing a module, we can change its name too. Here is an example to show.

https://www.programiz.com/python-programming/modules/math

4 | P a g e

Code

import module by renaming it

import math as m

print(m.pi)

Output: 3.141592653589793

Output:

Here, We have renamed the math module as m. This can save us typing time in

some cases.

Note that the name math is not recognized in our scope. Hence, math.pi is invalid,

and m.pi is the correct implementation.

Python from...import Statement

We can import specific names from a module without importing the module as a

whole. Here is an example.

Code

import only pi from math module

from math import pi

print(pi)

Output: 3.141592653589793

Here, we imported only the pi attribute from the math module.

5 | P a g e

We avoid using the dot (.) operator in these scenarios. As follows, we may import

many attributes at the same time:

Code

1. # Here, we are creating a simple Python program to show how to import multiple

2. # objects from a module

3. from math import e, tau

4. print("The value of tau constant is: ", tau)

5. print("The value of the euler's number is: ", e)

Output:

The value of tau constant is: 6.283185307179586

The value of the euler's number is: 2.718281828459045

Import all Names - From import * Statement

In Python, we can import all names(definitions) from a module using the following

construct:

import all names from the standard module math

from math import *

print("The value of pi is", pi)

Here, we have imported all the definitions from the math module. This includes all

names visible in our scope except those beginning with an underscore(private

definitions).

Importing everything with the asterisk (*) symbol is not a good programming

practice. This can lead to duplicate definitions for an identifier. It also hampers the

readability of our code.

6 | P a g e

Locating Path of Modules

The interpreter searches numerous places when importing a module in the Python

program. Several directories are searched if the built-in module is not present. The

list of directories can be accessed using sys.path. The Python interpreter looks for

the module in the way described below:

The module is initially looked for in the current working directory. Python then

explores every directory in the shell parameter PYTHONPATH if the module cannot

be located in the current directory. A list of folders makes up the environment

variable known as PYTHONPATH. Python examines the installation-dependent set

of folders set up when Python is downloaded if that also fails.

Here is an example to print the path.

Code

1. # Here, we are importing the sys module

2. import sys

3. # Here, we are printing the path using sys.path

4. print("Path of the sys module in the system is:", sys.path)

Output:

Path of the sys module in the system is:

['/home/pyodide', '/home/pyodide/lib/Python310.zip', '/lib/Python3.10',

'/lib/Python3.10/lib-dynload', '', '/lib/Python3.10/site-packages']

The dir() Built-in Function

In Python, we can use the dir() function to list all the function names in a module.

For instance, we have the following names in the standard module str. To print the

names, we will use the dir() method in the following way:

Code

1. # Here, we are creating a simple Python program to print the directory of a module

https://www.programiz.com/python-programming/methods/built-in/dir

7 | P a g e

2. print("List of functions:\n ", dir(str), end=", ")

Output:

List of functions:

['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__',

'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__',

'__getnewargs__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__',

'__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__',

'__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__',

'__sizeof__', '__str__', '__subclasshook__', 'capitalize', 'casefold', 'center', 'count',

'encode', 'endswith', 'expandtabs', 'find', 'format', 'format_map', 'index', 'isalnum',

'isalpha', 'isascii', 'isdecimal', 'isdigit', 'isidentifier', 'islower', 'isnumeric',

'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans',

'partition', 'removeprefix', 'removesuffix', 'replace', 'rfind', 'rindex', 'rjust',

'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title',

'translate', 'upper', 'zfill']

All other names that begin with an underscore are default Python attributes

associated with the module (not user-defined).

Strings:

In Python, a string is a sequence of characters. It is a simple data structure that

serves as the foundation for data manipulation. Strings in Python are "immutable."

They can't be modified once they're created.
 For example, "hello" is a string containing a sequence of characters 'h', 'e', 'l', 'l', and 'o'.

Strings in python are surrounded by either single quotation marks, or double

quotation marks.

'hello' is the same as "hello"

You can display a string literal with the print() function:

Example 1:

8 | P a g e

print("Hello")

print('Hello')

Example 2:

create string type variables

name = "Python"

print(name)

message = "I love Python."

print(message)

Output:

Python

I love Python.

In the above example, we have created string-type

variables: name and message with values "Python" and "I love

Python" respectively.

Here, we have used double quotes to represent strings, but we can use single

quotes too.

Presented by © Hurrah Suhail

9 | P a g e

What is string manipulation?
String manipulation is the process of manipulating and analyzing strings. It

includes a variety of processes involving the modification and parsing of strings to

use and change their data.

Concatenation of Strings
Concatenation means to join two or more strings into a single string. + operator is

used to concatenate strings. For example,

concatenating words Coding and Ninjas.

word1 = 'Coding'

word2 = ' Ninjas'

print(word1 + word2)

Output:
Coding Ninjas

Replace Part of a String
The replace() method is used to replace a part of the string with another string. As

an example, let's replace 'ing' in Coding with 'ers,' making it Coders.

string = 'Coding'

string = string.replace('ing', 'ers')

print(string)

Output:
Coders

Count characters
count() method is used to count a particular character in the string.

string = 'Coding Ninjas'

count the character 'i'.

count1 = string.count('i')

print("Count of 'i': ", count1)

Count spaces.

count2 = string.count(' ')

print("Number of spaces:", count2)

Output:

10 | P a g e

Count of ‘I’: 2

Number of spaces: 1

Split a String
It is a very common practice to split a string into smaller strings. In Python, we use

the split() function to do this. It splits the string from the identified separator and

returns all the pieces in a list.

Syntax:
string.split(separator, maxsplit)

 separator: the string splits at this separator.

 maxsplit (optional): tells how many splits to do.

For example:

string = 'Welcome to Coding Ninjas'

Splitting across the whitespace.

myList = string.split(" ")

print(myList)

Output:
[‘Welcome’, ‘to’, ‘Coding’, ‘Ninjas’]

find() function
The find() function looks for the first occurrence of the provided value. If the value

is not found in that string, it returns -1. The value can be any character or a

substring.

string = 'Welcome to Coding Ninjas'

index = string.find('t')

print(index)

Output:
8

join() Function
This method is used to join a sequence of strings with some operator.

The join() operator will create a new string by joining every character of the

sequence with a specified character, including whitespaces.

Note: The join() method only accepts strings. If any element in the iteration is of a

different type, an error will be thrown.

11 | P a g e

Syntax:
"character".join(seq)

 character: The character from which the strings will be joined.

 seq: Sequence of the strings to be joined.

string = 'Welcome to Coding Ninjas'

joining the above-given characters of the string with ‘,’.

string = ",".join(string)

print(string)

Output:
W,e,l,c,o,m,e, ,t,o, ,C,o,d,I,n,g, ,N,i,,n,j,a,s

Remove a Prefix or a Suffix
You can use the removeprefix() method to remove a prefix from a string.

Syntax:
string.removeprefix('prefix')

You can use the removesuffix() method to remove a suffix from a string.

Syntax:
string.removesuffix('suffix')

 lower(): Converts all uppercase characters in a string into lowercase

 upper(): Converts all lowercase characters in a string into uppercase

 title(): Convert string to title case

 swapcase(): Swap the cases of all characters in a string

 capitalize(): Convert the first character of a string to uppercase

Example:

text = 'geeKs For geEkS'

print(text.upper()) #GEEKS FOR GEEKS

print(text.lower()) #geeks for geeks

print(text.title()) #Geeks For Geeks

print(text.swapcase()) #GEEkS fOR GEeKs

print(text.capitalize()) #Geeks for geeks

print(text) #original

https://www.geeksforgeeks.org/python-string-lower/
https://www.geeksforgeeks.org/python-string-upper/
https://www.geeksforgeeks.org/title-in-python/
https://www.geeksforgeeks.org/python-string-swapcase/
https://www.geeksforgeeks.org/string-capitalize-python/

12 | P a g e

Object-oriented programming:

In Python object-oriented Programming (OOPs) is a programming concept that

uses objects and classes in programming. It aims to implement real-world entities

like inheritance, polymorphisms, encapsulation, etc. in the programming. The main

concept of object-oriented Programming (OOPs) or oops concepts in Python is to

bind the data and the functions that work together as a single unit so that no other

part of the code can access this data.

OOP in Python revolves around four main principles: encapsulation, inheritance,

polymorphism, and abstraction.

Overall, OOP in Python enables developers to create modular, organized, and

scalable code. It promotes the design of complex systems using smaller, reusable,

and understandable building blocks.

OOPs Concepts in Python

 Class in Python

 Objects in Python

 Polymorphism in Python

 Encapsulation in Python

 Inheritance in Python

 Data Abstraction in Python

Python Class:
 A class is a collection of objects. A class contains the blueprints or the prototype

from which the objects are being created. It is a logical entity that contains some

attributes and methods. It does not occupy memory. It's a way to group related

properties and methods under a single unit.

To understand the need for creating a class let’s consider an example, let’s say

you wanted to track the number of dogs that may have different attributes like

breed, and age. If a list is used, the first element could be the dog’s breed while

the second element could represent its age. Let’s suppose there are 100 different

dogs, then how would you know which element is supposed to be which? What if

13 | P a g e

you wanted to add other properties to these dogs? This lacks organization and it’s

the exact need for classes.

Some points on Python class:

 Classes are created by keyword class.

 Attributes are the variables that belong to a class.

 Attributes are always public and can be accessed using the dot (.) operator.

Eg.: Myclass.Myattribute

Class Definition Syntax:
class ClassName:

 # Statement-1

 .

 .

 .

 # Statement-N

Python Objects
An object is an instance of a class. The object is an entity that has a state and

behavior associated with it. Object takes memory. It may be any real-world object

like a mouse, keyboard, chair, table, pen, etc. Integers, strings, floating-point

numbers, even arrays, and dictionaries, are all objects. More specifically, any

single integer or any single string is an object.

The number 12 is an object, the string “Hello, world” is an object, a list is an object

that can hold other objects, and so on. You’ve been using objects all along and may

not even realize it.

An object consists of:
 State: It is represented by the attributes of an object. It also reflects the

properties of an object.

 Behavior: It is represented by the methods of an object. It also reflects the

response of an object to other objects.

 Identity: It gives a unique name to an object and enables one object to interact

with other objects.

Creating an Object:

This will create an object named obj of the class Dog defined above.

 obj = Dog()

14 | P a g e

The Python self parameter:

Class methods must have an extra first parameter in the method definition. We do

not give a value for this parameter when we call the method, Python provides it

If we have a method that takes no arguments, then we still have to have one

argument.

This is similar to this pointer in C++ and this reference in Java.

When we call a method of this object as myobject.method(arg1, arg2), this is

automatically converted by Python into MyClass.method(myobject, arg1, arg2) –

this is all the special self is about.

The Python __init__ Method:

The __init__ method is similar to constructors in C++ and Java. It is run as soon as

an object of a class is instantiated. The method is useful to do any initialization you

want to do with your object. Now let us define a class and create some objects

using the self and __init__ method.

Creating a class and object with class and instance attributes

class Dog:

 # class attribute

 attr1 = "mammal"

 # Instance attribute

 def __init__(self, name):

 self.name = name

Driver code

https://www.geeksforgeeks.org/__init__-in-python/

15 | P a g e

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class attributes

print("Rodger is a {}".format(Rodger.__class__.attr1))

print("Tommy is also a {}".format(Tommy.__class__.attr1))

Accessing instance attributes

print("My name is {}".format(Rodger.name))

print("My name is {}".format(Tommy.name))

Output

Rodger is a mammal

Tommy is also a mammal

My name is Rodger

My name is Tommy

Creating Classes and objects with methods

Here, The Dog class is defined with two attributes:

 attr1 is a class attribute set to the value “mammal“. Class attributes are

shared by all instances of the class.

 __init__ is a special method (constructor) that initializes an instance of the

Dog class. It takes two parameters: self (referring to the instance being

created) and name (representing the name of the dog). The name parameter

is used to assign a name attribute to each instance of Dog.

The speak method is defined within the Dog class. This method prints a

string that includes the name of the dog instance.

16 | P a g e

The driver code starts by creating two instances of the Dog class: Rodger and

Tommy. The __init__ method is called for each instance to initialize their name

attributes with the provided names. The speak method is called in both instances

(Rodger.speak() and Tommy.speak()), causing each dog to print a statement with

its name.

class Dog:

 # class attribute

 attr1 = "mammal"

 # Instance attribute

 def __init__(self, name):

 self.name = name

 def speak(self):

 print("My name is {}".format(self.name))

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class methods

Rodger.speak()

Tommy.speak()

17 | P a g e

Output:

My name is Rodger

My name is Tommy

Program to understand class and object in python:

Defining a class

class Car:

 # Constructor to initialize the object's attributes

 def __init__(self, make, model, year):

 self.make = make

 self.model = model

 self.year = year

 # Method to describe the car

 def description(self):

 return f"{self.year} {self.make} {self.model}"

 # Method to start the car

 def start(self):

 return f"The {self.model} is now starting."

Creating objects (instances of the Car class)

car1 = Car("Toyota", "Corolla", 2020)

car2 = Car("Honda", "Civic", 2019)

18 | P a g e

Accessing object properties and methods

print(car1.description()) # Output: 2020 Toyota Corolla

print(car2.start()) # Output: The Civic is now starting.

Comparison between class and object:

Aspect Class Object

Definition
A template or blueprint for creating

objects.

An instance of a class created

using the blueprint.

Memory
Does not consume memory until an

object is instantiated.

Consumes memory as it holds

the actual data.

Attributes
Defines the structure

(attributes/methods) of objects.

Holds actual data for those

attributes.

Methods
Defines behaviors that objects can

perform.

Invokes methods defined by the

class.

Example Car (class) car1, car2 (objects/instances)

In the example above, Car is the class, and car1 and car2 are objects (instances of

the Car class). Each object can have its own values for the attributes like make,

model, and year.

19 | P a g e

Python Inheritance

In Python object oriented Programming, Inheritance is the capability of one class

to derive or inherit the properties from another class. The class that derives

properties is called the derived class or child class and the class from which the

properties are being derived is called the base class or parent class. The benefits of

inheritance are:

 It represents real-world relationships well.

 It provides the reusability of a code. We don’t have to write the same code again

and again. Also, it allows us to add more features to a class without modifying

it.

 It is transitive in nature, which means that if class B inherits from another class

A, then all the subclasses of B would automatically inherit from class A.

Types of Inheritance:
 Single Inheritance: Single-level inheritance enables a derived class to inherit

characteristics from a single-parent class.

 Multilevel Inheritance: Multi-level inheritance enables a derived class to

inherit properties from an immediate parent class which in turn inherits

properties from his parent class.

 Hierarchical Inheritance: Hierarchical-level inheritance enables more than

one derived class to inherit properties from a parent class.

 Multiple Inheritance: Multiple-level inheritance enables one derived class to

inherit properties from more than one base class.

20 | P a g e

Program to understand inheritance:
 # parent class

 class Person(object):

 # __init__ is known as the constructor

 def __init__(self, name, idnumber):

 self.name = name

 self.idnumber = idnumber

 def display(self):

 print(self.name)

 print(self.idnumber)

 def details(self):

 print("My name is {}".format(self.name))

 print("IdNumber: {}".format(self.idnumber))

 # child class

 class Employee(Person):

 def __init__(self, name, idnumber, salary, post):

 self.salary = salary

21 | P a g e

 self.post = post

 # invoking the __init__ of the parent class

 Person.__init__(self, name, idnumber)

 def details(self):

 print("My name is {}".format(self.name))

 print("IdNumber: {}".format(self.idnumber))

 print("Post: {}".format(self.post))

 # creation of an object variable or an instance

 a = Employee('Rahul', 886012, 200000, "Intern")

 # calling a function of the class Person using

 # its instance

 a.display()

 a.details()

22 | P a g e

The super() Function:

The super() function allows you to call methods of the parent class from the child

class. It is often used in class inheritance to avoid explicitly referencing the parent

class. One primary use of super() is to ensure that the parent class's __init__

method is called when initializing an instance of the child class.

Using super() ensures that the parent class is properly initialized without having to

hardcode the parent class's name, making the code more flexible.

Python program to demonstrate the use of super() function :
Parent class

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def display_info(self):

 print(f"Name: {self.name}, Age: {self.age}")

Child class inheriting from Person

class Employee(Person):

 def __init__(self, name, age, employee_id, position):

 # Call the parent class's __init__ method using super()

 super().__init__(name, age)

 self.employee_id = employee_id

 self.position = position

 def display_info(self):

 # Call the parent class's display_info method using super()

 super().display_info() # Displays name and age

 print(f"Employee ID: {self.employee_id}, Position: {self.position}")

Testing the functionality

person = Person("Alice", 30)

employee = Employee("Bob", 35, "E12345", "Software Developer")

Display information for person and employee

person.display_info() # Output: Name: Alice, Age: 30

23 | P a g e

print() # Just to separate the outputs

employee.display_info()

Output:

Name: Bob, Age: 35

Employee ID: E12345, Position: Software Developer

Polymorphism

Polymorphism contains two words "poly" and "morphs". Poly means many, and

morph means shape. By polymorphism, we understand that one task can be

performed in different ways. For example - you have a class animal, and all animals

speak. But they speak differently. Here, the "speak" behavior is polymorphic in a

sense and depends on the animal. So, the abstract "animal" concept does not actually

"speak", but specific animals (like dogs and cats) have a concrete implementation of

the action "speak".

The advantages of polymorphism in Python include:

 Code Reusability: You can write flexible and generic code that

works with different object types, reducing duplication.

 Maintainability: Polymorphism helps you organize code better,

making it easier to modify or extend without changing existing code.

 Flexibility and Extensibility: It allows for easy addition of new

functionality or object types without altering existing functions or

code structures.

 Dynamic Behavior: The same function can behave differently based

on the object type, providing dynamic and context-specific behavior.

24 | P a g e

Example:
Here's a simple example of polymorphism in Python using a `speak` method for

different animal classes:

class Dog:

 def speak(self):

 return "Woof!"

class Cat:

 def speak(self):

 return "Meow!"

Function that takes any animal and calls its speak method

def animal_sound(animal):

 print(animal.speak())

Create instances of Dog and Cat

dog = Dog()

cat = Cat()

Call the same function, but with different objects

animal_sound(dog) # Output: Woof!

animal_sound(cat) # Output: Meow!

In this example, both `Dog` and `Cat` have a `speak` method, but they return

different sounds. The `animal_sound` function can take any object (dog or cat)

and call their `speak` method, showcasing polymorphism.

Presented by © Hurrah Suhail

25 | P a g e

Encapsulation:

In Python object oriented programming, Encapsulation is one of the fundamental

concepts in object-oriented programming (OOP). It describes the idea of wrapping

data and the methods that work on data within one unit. This puts restrictions on

accessing variables and methods directly and can prevent the accidental

modification of data. To prevent accidental change, an object’s variable can only

be changed by an object’s method. Those types of variables are known as private

variables.

A class is an example of encapsulation as it encapsulates all the data that is member

functions, variables, etc.

Example of Encapsulation in Python:
In the above example, we have created the c variable as the private attribute. We

cannot even access this attribute directly and can’t even change its value.

Python

Python program to

demonstrate private members

"__" double underscore represents private attribute.

Private attributes start with "__".

Creating a Base class

class Base:

 def __init__(self):

 self.a = "GeeksforGeeks"

 self.__c = "GeeksforGeeks"

Creating a derived class

class Derived(Base):

 def __init__(self):

 # Calling constructor of

26 | P a g e

 # Base class

 Base.__init__(self)

 print("Calling private member of base class: ")

 print(self.__c)

Driver code

obj1 = Base()

print(obj1.a)

Uncommenting print(obj1.c) will

raise an AttributeError

Uncommenting obj2 = Derived() will

also raise an AtrributeError as

private member of base class

is called inside derived class

Output
GeeksforGeeks

Abstraction in Python

Abstraction in Object-Oriented Programming (OOP) refers to the concept of

hiding the complex code details and exposing only the essential parts of a program.

This allows the user to interact with an object without needing to understand the

underlying complexity, making code more modular and easier to manage.

Why is Abstraction Useful?

 Reduces complexity by hiding the unnecessary details.

 Encourages code reusability and modular design.

 Provides a layer of security by restricting access to certain data or

functionality.

 It simplifies the interface for the users of the class.

Example to understand abstraction in python:

27 | P a g e

 class Rectangle:
 def __init__(self, length, width):
 self.__length = length # Private attribute
 self.__width = width # Private attribute

 def area(self):
 return self.__length * self.__width

 def perimeter(self):
 return 2 * (self.__length + self.__width)

 rect = Rectangle(5, 3)
 print(f"Area: {rect.area()}") # Output: Area: 15
 print(f"Perimeter: {rect.perimeter()}") # Output: Perimeter: 16

 # print(rect.__length) # This will raise an AttributeError as length and width are private attributes

Output
 Area: 15

 Perimeter: 16

Exception Handling:

Exception handling is a way to manage errors that occur while a program is

running. Instead of letting the program crash, you can use exception handling to

respond to these errors in a controlled way.

What Are Exceptions?

 Exceptions are errors that happen during the execution of your program. An

exception is an event that disrupts the normal flow of a program. Python

provides a mechanism to catch and handle such exceptions to avoid program

crashes.

 Examples include dividing by zero (ZeroDivisionError), trying to open a file

that doesn't exist (FileNotFoundError), or entering a wrong type of data

(ValueError).

28 | P a g e

Types of Exceptions:

There are two types of exceptions in python.

1. Built-in exceptions.

2. User defined exceptions or custom exceptions

Built-in exceptions:

Built-in exceptions are predefined exceptions that Python provides out of the box.

They cover a wide range of common errors that can occur during program execution.

Here are some key built-in exceptions:

 SyntaxError: This exception is raised when the interpreter encounters a syntax

error in the code, such as a misspelled keyword, a missing colon, or an

unbalanced parenthesis.

 TypeError: This exception is raised when an operation or function is applied

to an object of the wrong type, such as adding a string to an integer.

 NameError: This exception is raised when a variable or function name is not

found in the current scope.

 IndexError: This exception is raised when an index is out of range for a list,

tuple, or other sequence types.

 KeyError: This exception is raised when a key is not found in a dictionary.

 ValueError: This exception is raised when a function or method is called with

an invalid argument or input, such as trying to convert a string to an integer

when the string does not represent a valid integer.

 AttributeError: This exception is raised when an attribute or method is not

found on an object, such as trying to access a non-existent attribute of a class

instance.

 IOError: This exception is raised when an I/O operation, such as reading or

writing a file, fails due to an input/output error.

 ZeroDivisionError: This exception is raised when an attempt is made to divide

a number by zero.

 ImportError: This exception is raised when an import statement fails to find

or load a module.

29 | P a g e

User defined exceptions or custom exceptions:

User-defined exceptions are custom exceptions created by the programmer. These

exceptions can be used to represent specific error conditions that are relevant to

your application. To create a user-defined exception, you typically subclass the

built-in Exception class. Here’s how to do it:

Example:

class NegativeNumberError(Exception):

 pass

def check_positive(number):

 if number < 0:

 raise NegativeNumberError("Negative numbers are not allowed.")

 return number

try:

 number = int(input("Enter a positive number: "))

 print(check_positive(number))

except NegativeNumberError as e:

 print(e)

How Exception Handling Works

Exception handling in Python allows you to manage errors gracefully without

crashing your program.

30 | P a g e

When an error occurs in Python, an exception is raised. If the exception is not

handled, it will propagate up the call stack, potentially terminating the program. To

manage exceptions, you can use try, except, else, and finally blocks.

 try: Write the code that might cause an error.

 except: Write the code that runs if an error happens.

 else: (Optional) Write code that runs if no errors happen.

 finally: (Optional) Write code that always runs, whether an error happened

or not

Try Block:

The try block contains code that may raise an exception. Python will attempt to

execute this code.

try:

 # Code that might raise an exception

 result = 10 / 0 # This will raise ZeroDivisionError

Except Block:

The except block allows you to catch and handle specific exceptions. You can have

multiple except blocks to handle different exceptions. If an error happens, the

program runs the code inside the matching except block.

Else Block:

The else block executes if no exceptions are raised in the try block. It's useful for

code that should run when the try block is successful.

Finally Block:

The finally block will execute regardless of whether an exception was raised or

not. This is often used for cleanup actions, such as closing files or releasing

resources.

Example 1:
def divide_numbers(num1, num2):

31 | P a g e

 try:

 result = num1 / num2

 except ZeroDivisionError:

 print("Error: Cannot divide by zero.")

 except TypeError:

 print("Error: Please provide numbers.")

 else:

 print("Result:", result)

 finally:

 print("Operation completed.")

Testing the function

divide_numbers(10, 2) # Should print the result

divide_numbers(10, 0) # Should handle division by zero

divide_numbers(10, 'a') # Should handle type error

Example 2:

try:

 number = int(input("Enter a number: "))

 result = 10 / number

except ValueError: # This line might cause a ValueError

 print("Please enter a valid number!")

except ZeroDivisionError: # This line might cause a ZeroDivisionError

 print("You can't divide by zero!")

else:

 print(f"The result is {result}")

finally:

 print("This runs no matter what.")

32 | P a g e

Built-in functions:

Python provides several built-in functions to help handle exceptions effectively.

These functions allow you to raise exceptions, catch them, and introspect them.

Here are the main ones related to exception handling:

1. raise

 Used to manually raise an exception when a specific condition occurs.

Usage:

raise ValueError("This is a custom error message")

You can also raise the same exception from within an except block using

raise without arguments to re-raise the caught exception:

try:

 1 / 0

except ZeroDivisionError:

 print("Caught an error")

 raise # Re-raise the original exception

2. assert

 The assert statement is used for debugging purposes. It tests a condition and

raises an AssertionError if the condition is false. You can optionally provide

an error message.

Usage:

assert 2 + 2 == 4 # This will pass without error

assert 2 + 2 == 5, "Math error!" # This will raise an AssertionError with the

message

When the condition evaluates to False, the AssertionError is raised.

33 | P a g e

3. try: Write the code that might cause an error.

4. except: Write the code that runs if an error happens.

5. else: (Optional) Write code that runs if no errors happen.

6. finally: (Optional) Write code that always runs, whether an error

happened or not

Multithreading in Python

In Python, a thread is the smallest unit of a process that can be scheduled and

executed by the operating system. Threads allow concurrent execution of multiple

operations within a single process, meaning you can run multiple tasks at the same

time within a single Python program. In simple words, a thread is a sequence of

such instructions within a program that can be executed independently of other

code. For simplicity, you can assume that a thread is simply a subset of a process!

A thread contains all this information in a Thread Control Block (TCB).

Python provides a built-in library called threading that allows you to create and

manage threads.

Multiple threads can exist within one process where:

 Each thread contains its own register set and local variables (stored in the

stack).

 All threads of a process share global variables (stored in heap) and

the program code.

How to create and run a thread in Python:

import threading

def print_numbers():

 for i in range(5):

 print(i)

https://www.geeksforgeeks.org/thread-control-block-in-operating-system/

34 | P a g e

Create a thread

thread = threading.Thread(target=print_numbers)

thread.start() # Start the thread

thread.join() # Wait for the thread to finish

print("Thread has finished executing")

Multithreading:

Multithreading in Python is a technique that allows multiple threads to be

executed concurrently.

In a simple, single-core CPU, it is achieved using frequent switching between

threads. This is termed context switching. In context switching, the state of a

thread is saved and the state of another thread is loaded whenever any interrupt

(due to I/O or manually set) takes place. Context switching takes place so

frequently that all the threads appear to be running parallelly (this is

termed multitasking).

Multithreading Example 1:

import threading

def print_cube(num):

 print("Cube: {}" .format(num * num * num))

def print_square(num):

 print("Square: {}" .format(num * num))

35 | P a g e

if __name__ =="__main__":

 t1 = threading.Thread(target=print_square, args=(10,))

 t2 = threading.Thread(target=print_cube, args=(10,))

 t1.start()

 t2.start()

 t1.join()

 t2.join()

 print("Done!")

Multithreading Example 2:

Program demonstrating multithreading in Python using the threading module. The

example will create two threads, each printing a message multiple times.

import threading

import time

Function to be executed by each thread

def print_message(message):

 for _ in range(3):

 print(message)

 time.sleep(1) # Simulate a delay

36 | P a g e

Create two threads

thread1 = threading.Thread(target=print_message, args=("Hello from Thread 1!",))

thread2 = threading.Thread(target=print_message, args=("Hello from Thread 2!",))

thread1.start() # Start both threads

thread2.start()

thread1.join() # Wait for both threads to complete

thread2.join()

print("Both threads have finished executing")

These notes are prepared by Suhail Abass Hurrah (S.P College

Srinagar, batch 2019)

For any queries, you can email me at Hurrahsuhail1@gmail.com

Presented by © Hurrah Suhail

